Metamath Proof Explorer


Theorem fsumdvdsmul

Description: Product of two divisor sums. (This is also the main part of the proof that " sum_ k || N F ( k ) is a multiplicative function if F is".) (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Hypotheses dvdsmulf1o.1 φM
dvdsmulf1o.2 φN
dvdsmulf1o.3 φMgcdN=1
dvdsmulf1o.x X=x|xM
dvdsmulf1o.y Y=x|xN
dvdsmulf1o.z Z=x|x M N
fsumdvdsmul.4 φjXA
fsumdvdsmul.5 φkYB
fsumdvdsmul.6 φjXkYAB=D
fsumdvdsmul.7 i=jkC=D
Assertion fsumdvdsmul φjXAkYB=iZC

Proof

Step Hyp Ref Expression
1 dvdsmulf1o.1 φM
2 dvdsmulf1o.2 φN
3 dvdsmulf1o.3 φMgcdN=1
4 dvdsmulf1o.x X=x|xM
5 dvdsmulf1o.y Y=x|xN
6 dvdsmulf1o.z Z=x|x M N
7 fsumdvdsmul.4 φjXA
8 fsumdvdsmul.5 φkYB
9 fsumdvdsmul.6 φjXkYAB=D
10 fsumdvdsmul.7 i=jkC=D
11 fzfid φ1MFin
12 dvdsssfz1 Mx|xM1M
13 1 12 syl φx|xM1M
14 4 13 eqsstrid φX1M
15 11 14 ssfid φXFin
16 fzfid φ1NFin
17 dvdsssfz1 Nx|xN1N
18 2 17 syl φx|xN1N
19 5 18 eqsstrid φY1N
20 16 19 ssfid φYFin
21 20 8 fsumcl φkYB
22 15 21 7 fsummulc1 φjXAkYB=jXAkYB
23 20 adantr φjXYFin
24 8 adantlr φjXkYB
25 23 7 24 fsummulc2 φjXAkYB=kYAB
26 9 anassrs φjXkYAB=D
27 26 sumeq2dv φjXkYAB=kYD
28 25 27 eqtrd φjXAkYB=kYD
29 28 sumeq2dv φjXAkYB=jXkYD
30 fveq2 z=jk×z=×jk
31 df-ov jk=×jk
32 30 31 eqtr4di z=jk×z=jk
33 32 csbeq1d z=jk×z/iC=jk/iC
34 ovex jkV
35 34 10 csbie jk/iC=D
36 33 35 eqtrdi z=jk×z/iC=D
37 7 adantrr φjXkYA
38 8 adantrl φjXkYB
39 37 38 mulcld φjXkYAB
40 9 39 eqeltrrd φjXkYD
41 36 15 20 40 fsumxp φjXkYD=zX×Y×z/iC
42 nfcv _wC
43 nfcsb1v _iw/iC
44 csbeq1a i=wC=w/iC
45 42 43 44 cbvsumi iZC=wZw/iC
46 csbeq1 w=×zw/iC=×z/iC
47 xpfi XFinYFinX×YFin
48 15 20 47 syl2anc φX×YFin
49 1 2 3 4 5 6 dvdsmulf1o φ×X×Y:X×Y1-1 ontoZ
50 fvres zX×Y×X×Yz=×z
51 50 adantl φzX×Y×X×Yz=×z
52 40 ralrimivva φjXkYD
53 36 eleq1d z=jk×z/iCD
54 53 ralxp zX×Y×z/iCjXkYD
55 52 54 sylibr φzX×Y×z/iC
56 ax-mulf ×:×
57 ffn ×:××Fn×
58 56 57 ax-mp ×Fn×
59 4 ssrab3 X
60 nnsscn
61 59 60 sstri X
62 5 ssrab3 Y
63 62 60 sstri Y
64 xpss12 XYX×Y×
65 61 63 64 mp2an X×Y×
66 46 eleq1d w=×zw/iC×z/iC
67 66 ralima ×Fn×X×Y×w×X×Yw/iCzX×Y×z/iC
68 58 65 67 mp2an w×X×Yw/iCzX×Y×z/iC
69 df-ima ×X×Y=ran×X×Y
70 f1ofo ×X×Y:X×Y1-1 ontoZ×X×Y:X×YontoZ
71 forn ×X×Y:X×YontoZran×X×Y=Z
72 49 70 71 3syl φran×X×Y=Z
73 69 72 eqtrid φ×X×Y=Z
74 73 raleqdv φw×X×Yw/iCwZw/iC
75 68 74 bitr3id φzX×Y×z/iCwZw/iC
76 55 75 mpbid φwZw/iC
77 76 r19.21bi φwZw/iC
78 46 48 49 51 77 fsumf1o φwZw/iC=zX×Y×z/iC
79 45 78 eqtrid φiZC=zX×Y×z/iC
80 41 79 eqtr4d φjXkYD=iZC
81 22 29 80 3eqtrd φjXAkYB=iZC