| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fta1g.p |  | 
						
							| 2 |  | fta1g.b |  | 
						
							| 3 |  | fta1g.d |  | 
						
							| 4 |  | fta1g.o |  | 
						
							| 5 |  | fta1g.w |  | 
						
							| 6 |  | fta1g.z |  | 
						
							| 7 |  | fta1g.1 |  | 
						
							| 8 |  | fta1g.2 |  | 
						
							| 9 |  | fta1glem.k |  | 
						
							| 10 |  | fta1glem.x |  | 
						
							| 11 |  | fta1glem.m |  | 
						
							| 12 |  | fta1glem.a |  | 
						
							| 13 |  | fta1glem.g |  | 
						
							| 14 |  | fta1glem.3 |  | 
						
							| 15 |  | fta1glem.4 |  | 
						
							| 16 |  | fta1glem.5 |  | 
						
							| 17 |  | 1cnd |  | 
						
							| 18 |  | isidom |  | 
						
							| 19 |  | domnnzr |  | 
						
							| 20 | 18 19 | simplbiim |  | 
						
							| 21 | 7 20 | syl |  | 
						
							| 22 |  | nzrring |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 18 | simplbi |  | 
						
							| 25 | 7 24 | syl |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 9 | fvexi |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 4 1 26 9 | evl1rhm |  | 
						
							| 31 | 25 30 | syl |  | 
						
							| 32 | 2 27 | rhmf |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 33 8 | ffvelcdmd |  | 
						
							| 35 | 26 9 27 7 29 34 | pwselbas |  | 
						
							| 36 | 35 | ffnd |  | 
						
							| 37 |  | fniniseg |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 | 16 38 | mpbid |  | 
						
							| 40 | 39 | simpld |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 1 2 9 10 11 12 13 4 21 25 40 41 3 5 | ply1remlem |  | 
						
							| 43 | 42 | simp1d |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 44 41 | mon1puc1p |  | 
						
							| 46 | 23 43 45 | syl2anc |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 47 1 2 44 | q1pcl |  | 
						
							| 49 | 23 8 46 48 | syl3anc |  | 
						
							| 50 |  | peano2nn0 |  | 
						
							| 51 | 14 50 | syl |  | 
						
							| 52 | 15 51 | eqeltrd |  | 
						
							| 53 | 3 1 6 2 | deg1nn0clb |  | 
						
							| 54 | 23 8 53 | syl2anc |  | 
						
							| 55 | 52 54 | mpbird |  | 
						
							| 56 | 39 | simprd |  | 
						
							| 57 |  | eqid |  | 
						
							| 58 | 1 2 9 10 11 12 13 4 21 25 40 8 5 57 | facth1 |  | 
						
							| 59 | 56 58 | mpbird |  | 
						
							| 60 |  | eqid |  | 
						
							| 61 | 1 57 2 44 60 47 | dvdsq1p |  | 
						
							| 62 | 23 8 46 61 | syl3anc |  | 
						
							| 63 | 59 62 | mpbid |  | 
						
							| 64 | 63 | eqcomd |  | 
						
							| 65 | 1 | ply1crng |  | 
						
							| 66 | 25 65 | syl |  | 
						
							| 67 |  | crngring |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 | 1 2 41 | mon1pcl |  | 
						
							| 70 | 43 69 | syl |  | 
						
							| 71 | 2 60 6 | ringlz |  | 
						
							| 72 | 68 70 71 | syl2anc |  | 
						
							| 73 | 55 64 72 | 3netr4d |  | 
						
							| 74 |  | oveq1 |  | 
						
							| 75 | 74 | necon3i |  | 
						
							| 76 | 73 75 | syl |  | 
						
							| 77 | 3 1 6 2 | deg1nn0cl |  | 
						
							| 78 | 23 49 76 77 | syl3anc |  | 
						
							| 79 | 78 | nn0cnd |  | 
						
							| 80 | 14 | nn0cnd |  | 
						
							| 81 | 2 60 | crngcom |  | 
						
							| 82 | 66 49 70 81 | syl3anc |  | 
						
							| 83 | 63 82 | eqtrd |  | 
						
							| 84 | 83 | fveq2d |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 | 42 | simp2d |  | 
						
							| 87 |  | 1nn0 |  | 
						
							| 88 | 86 87 | eqeltrdi |  | 
						
							| 89 | 3 1 6 2 | deg1nn0clb |  | 
						
							| 90 | 23 70 89 | syl2anc |  | 
						
							| 91 | 88 90 | mpbird |  | 
						
							| 92 |  | eqid |  | 
						
							| 93 | 85 92 | unitrrg |  | 
						
							| 94 | 23 93 | syl |  | 
						
							| 95 | 3 92 44 | uc1pldg |  | 
						
							| 96 | 46 95 | syl |  | 
						
							| 97 | 94 96 | sseldd |  | 
						
							| 98 | 3 1 85 2 60 6 23 70 91 97 49 76 | deg1mul2 |  | 
						
							| 99 | 84 15 98 | 3eqtr3d |  | 
						
							| 100 |  | ax-1cn |  | 
						
							| 101 |  | addcom |  | 
						
							| 102 | 80 100 101 | sylancl |  | 
						
							| 103 | 86 | oveq1d |  | 
						
							| 104 | 99 102 103 | 3eqtr3rd |  | 
						
							| 105 | 17 79 80 104 | addcanad |  |