Metamath Proof Explorer


Theorem fta1glem1

Description: Lemma for fta1g . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses fta1g.p P=Poly1R
fta1g.b B=BaseP
fta1g.d D=deg1R
fta1g.o O=eval1R
fta1g.w W=0R
fta1g.z 0˙=0P
fta1g.1 φRIDomn
fta1g.2 φFB
fta1glem.k K=BaseR
fta1glem.x X=var1R
fta1glem.m -˙=-P
fta1glem.a A=algScP
fta1glem.g G=X-˙AT
fta1glem.3 φN0
fta1glem.4 φDF=N+1
fta1glem.5 φTOF-1W
Assertion fta1glem1 φDFquot1pRG=N

Proof

Step Hyp Ref Expression
1 fta1g.p P=Poly1R
2 fta1g.b B=BaseP
3 fta1g.d D=deg1R
4 fta1g.o O=eval1R
5 fta1g.w W=0R
6 fta1g.z 0˙=0P
7 fta1g.1 φRIDomn
8 fta1g.2 φFB
9 fta1glem.k K=BaseR
10 fta1glem.x X=var1R
11 fta1glem.m -˙=-P
12 fta1glem.a A=algScP
13 fta1glem.g G=X-˙AT
14 fta1glem.3 φN0
15 fta1glem.4 φDF=N+1
16 fta1glem.5 φTOF-1W
17 1cnd φ1
18 isidom RIDomnRCRingRDomn
19 domnnzr RDomnRNzRing
20 18 19 simplbiim RIDomnRNzRing
21 7 20 syl φRNzRing
22 nzrring RNzRingRRing
23 21 22 syl φRRing
24 18 simplbi RIDomnRCRing
25 7 24 syl φRCRing
26 eqid R𝑠K=R𝑠K
27 eqid BaseR𝑠K=BaseR𝑠K
28 9 fvexi KV
29 28 a1i φKV
30 4 1 26 9 evl1rhm RCRingOPRingHomR𝑠K
31 25 30 syl φOPRingHomR𝑠K
32 2 27 rhmf OPRingHomR𝑠KO:BBaseR𝑠K
33 31 32 syl φO:BBaseR𝑠K
34 33 8 ffvelcdmd φOFBaseR𝑠K
35 26 9 27 7 29 34 pwselbas φOF:KK
36 35 ffnd φOFFnK
37 fniniseg OFFnKTOF-1WTKOFT=W
38 36 37 syl φTOF-1WTKOFT=W
39 16 38 mpbid φTKOFT=W
40 39 simpld φTK
41 eqid Monic1pR=Monic1pR
42 1 2 9 10 11 12 13 4 21 25 40 41 3 5 ply1remlem φGMonic1pRDG=1OG-1W=T
43 42 simp1d φGMonic1pR
44 eqid Unic1pR=Unic1pR
45 44 41 mon1puc1p RRingGMonic1pRGUnic1pR
46 23 43 45 syl2anc φGUnic1pR
47 eqid quot1pR=quot1pR
48 47 1 2 44 q1pcl RRingFBGUnic1pRFquot1pRGB
49 23 8 46 48 syl3anc φFquot1pRGB
50 peano2nn0 N0N+10
51 14 50 syl φN+10
52 15 51 eqeltrd φDF0
53 3 1 6 2 deg1nn0clb RRingFBF0˙DF0
54 23 8 53 syl2anc φF0˙DF0
55 52 54 mpbird φF0˙
56 39 simprd φOFT=W
57 eqid rP=rP
58 1 2 9 10 11 12 13 4 21 25 40 8 5 57 facth1 φGrPFOFT=W
59 56 58 mpbird φGrPF
60 eqid P=P
61 1 57 2 44 60 47 dvdsq1p RRingFBGUnic1pRGrPFF=Fquot1pRGPG
62 23 8 46 61 syl3anc φGrPFF=Fquot1pRGPG
63 59 62 mpbid φF=Fquot1pRGPG
64 63 eqcomd φFquot1pRGPG=F
65 1 ply1crng RCRingPCRing
66 25 65 syl φPCRing
67 crngring PCRingPRing
68 66 67 syl φPRing
69 1 2 41 mon1pcl GMonic1pRGB
70 43 69 syl φGB
71 2 60 6 ringlz PRingGB0˙PG=0˙
72 68 70 71 syl2anc φ0˙PG=0˙
73 55 64 72 3netr4d φFquot1pRGPG0˙PG
74 oveq1 Fquot1pRG=0˙Fquot1pRGPG=0˙PG
75 74 necon3i Fquot1pRGPG0˙PGFquot1pRG0˙
76 73 75 syl φFquot1pRG0˙
77 3 1 6 2 deg1nn0cl RRingFquot1pRGBFquot1pRG0˙DFquot1pRG0
78 23 49 76 77 syl3anc φDFquot1pRG0
79 78 nn0cnd φDFquot1pRG
80 14 nn0cnd φN
81 2 60 crngcom PCRingFquot1pRGBGBFquot1pRGPG=GPFquot1pRG
82 66 49 70 81 syl3anc φFquot1pRGPG=GPFquot1pRG
83 63 82 eqtrd φF=GPFquot1pRG
84 83 fveq2d φDF=DGPFquot1pRG
85 eqid RLRegR=RLRegR
86 42 simp2d φDG=1
87 1nn0 10
88 86 87 eqeltrdi φDG0
89 3 1 6 2 deg1nn0clb RRingGBG0˙DG0
90 23 70 89 syl2anc φG0˙DG0
91 88 90 mpbird φG0˙
92 eqid UnitR=UnitR
93 85 92 unitrrg RRingUnitRRLRegR
94 23 93 syl φUnitRRLRegR
95 3 92 44 uc1pldg GUnic1pRcoe1GDGUnitR
96 46 95 syl φcoe1GDGUnitR
97 94 96 sseldd φcoe1GDGRLRegR
98 3 1 85 2 60 6 23 70 91 97 49 76 deg1mul2 φDGPFquot1pRG=DG+DFquot1pRG
99 84 15 98 3eqtr3d φN+1=DG+DFquot1pRG
100 ax-1cn 1
101 addcom N1N+1=1+N
102 80 100 101 sylancl φN+1=1+N
103 86 oveq1d φDG+DFquot1pRG=1+DFquot1pRG
104 99 102 103 3eqtr3rd φ1+DFquot1pRG=1+N
105 17 79 80 104 addcanad φDFquot1pRG=N