| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grlimgrtri.g |
|
| 2 |
|
grlimgrtri.h |
|
| 3 |
|
grlimgrtri.n |
|
| 4 |
|
grlimgrtri.t |
Could not format ( ph -> T e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> T e. ( GrTriangles ` G ) ) with typecode |- |
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
grtriprop |
Could not format ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( T e. ( GrTriangles ` G ) -> E. a e. ( Vtx ` G ) E. b e. ( Vtx ` G ) E. c e. ( Vtx ` G ) ( T = { a , b , c } /\ ( # ` T ) = 3 /\ ( { a , b } e. ( Edg ` G ) /\ { a , c } e. ( Edg ` G ) /\ { b , c } e. ( Edg ` G ) ) ) ) with typecode |- |
| 8 |
4 7
|
syl |
|
| 9 |
1 2 3
|
3jca |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
sseq1 |
|
| 15 |
14
|
cbvrabv |
|
| 16 |
|
sseq1 |
|
| 17 |
16
|
cbvrabv |
|
| 18 |
5 10 11 12 6 13 15 17
|
usgrlimprop |
|
| 19 |
|
eqidd |
|
| 20 |
|
oveq2 |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
19 20 22
|
f1oeq123d |
|
| 24 |
|
eqidd |
|
| 25 |
20
|
sseq2d |
|
| 26 |
25
|
rabbidv |
|
| 27 |
22
|
sseq2d |
|
| 28 |
27
|
rabbidv |
|
| 29 |
24 26 28
|
f1oeq123d |
|
| 30 |
26
|
raleqdv |
|
| 31 |
29 30
|
anbi12d |
|
| 32 |
31
|
exbidv |
|
| 33 |
23 32
|
anbi12d |
|
| 34 |
33
|
exbidv |
|
| 35 |
34
|
rspcv |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
36
|
adantl |
|
| 38 |
|
tpex |
|
| 39 |
38
|
a1i |
|
| 40 |
|
f1of1 |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
5
|
clnbgrvtxel |
|
| 44 |
43
|
3ad2ant1 |
|
| 45 |
44
|
adantr |
|
| 46 |
|
simplr |
|
| 47 |
|
simpll |
|
| 48 |
|
simpr |
|
| 49 |
5 6
|
predgclnbgrel |
|
| 50 |
46 47 48 49
|
syl3anc |
|
| 51 |
50
|
2a1d |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
3impd |
|
| 54 |
53
|
3adant3 |
|
| 55 |
54
|
imp |
|
| 56 |
|
simplr |
|
| 57 |
|
simpll |
|
| 58 |
|
simpr |
|
| 59 |
5 6
|
predgclnbgrel |
|
| 60 |
56 57 58 59
|
syl3anc |
|
| 61 |
60
|
a1d |
|
| 62 |
61
|
ex |
|
| 63 |
62
|
a1d |
|
| 64 |
63
|
3impd |
|
| 65 |
64
|
3adant2 |
|
| 66 |
65
|
imp |
|
| 67 |
45 55 66
|
3jca |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
2a1d |
|
| 70 |
69
|
3impd |
|
| 71 |
70
|
a1d |
|
| 72 |
71
|
adantl |
|
| 73 |
72
|
3imp |
|
| 74 |
|
3simpa |
|
| 75 |
74
|
3ad2ant3 |
|
| 76 |
73 75
|
jca |
|
| 77 |
|
grtrimap |
|
| 78 |
42 76 77
|
sylc |
|
| 79 |
|
tpeq1 |
|
| 80 |
79
|
eqeq2d |
|
| 81 |
|
preq1 |
|
| 82 |
81
|
eleq1d |
|
| 83 |
|
preq1 |
|
| 84 |
83
|
eleq1d |
|
| 85 |
82 84
|
3anbi12d |
|
| 86 |
80 85
|
3anbi13d |
|
| 87 |
|
tpeq2 |
|
| 88 |
87
|
eqeq2d |
|
| 89 |
|
preq2 |
|
| 90 |
89
|
eleq1d |
|
| 91 |
|
preq1 |
|
| 92 |
91
|
eleq1d |
|
| 93 |
90 92
|
3anbi13d |
|
| 94 |
88 93
|
3anbi13d |
|
| 95 |
|
tpeq3 |
|
| 96 |
95
|
eqeq2d |
|
| 97 |
|
preq2 |
|
| 98 |
97
|
eleq1d |
|
| 99 |
|
preq2 |
|
| 100 |
99
|
eleq1d |
|
| 101 |
98 100
|
3anbi23d |
|
| 102 |
96 101
|
3anbi13d |
|
| 103 |
10
|
clnbgrisvtx |
|
| 104 |
103
|
3ad2ant1 |
|
| 105 |
104
|
3ad2ant1 |
|
| 106 |
105
|
adantl |
|
| 107 |
10
|
clnbgrisvtx |
|
| 108 |
107
|
3ad2ant2 |
|
| 109 |
108
|
3ad2ant1 |
|
| 110 |
109
|
adantl |
|
| 111 |
10
|
clnbgrisvtx |
|
| 112 |
111
|
3ad2ant3 |
|
| 113 |
112
|
3ad2ant1 |
|
| 114 |
113
|
adantl |
|
| 115 |
|
eqidd |
|
| 116 |
|
fveq2 |
|
| 117 |
116
|
eqcoms |
|
| 118 |
117
|
3ad2ant2 |
|
| 119 |
|
simp3 |
|
| 120 |
118 119
|
eqtrd |
|
| 121 |
120
|
adantl |
|
| 122 |
|
uspgruhgr |
|
| 123 |
1 122
|
syl |
|
| 124 |
123
|
adantr |
|
| 125 |
|
simp3 |
|
| 126 |
124 125
|
anim12i |
|
| 127 |
126
|
3adant2 |
|
| 128 |
127
|
adantr |
|
| 129 |
|
eqid |
|
| 130 |
|
eqid |
|
| 131 |
5 129 6 130
|
grlimgrtrilem1 |
|
| 132 |
128 131
|
syl |
|
| 133 |
|
eqid |
|
| 134 |
|
eqid |
|
| 135 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
| 136 |
135
|
3expia |
|
| 137 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
| 138 |
137
|
3expia |
|
| 139 |
5 129 6 130 133 13 134
|
grlimgrtrilem2 |
|
| 140 |
139
|
3expia |
|
| 141 |
136 138 140
|
3anim123d |
|
| 142 |
141
|
anasss |
|
| 143 |
142
|
ancoms |
|
| 144 |
143
|
3adant3 |
|
| 145 |
144
|
3ad2ant2 |
|
| 146 |
145
|
adantr |
|
| 147 |
132 146
|
mpd |
|
| 148 |
115 121 147
|
3jca |
|
| 149 |
86 94 102 106 110 114 148
|
3rspcedvdw |
|
| 150 |
78 149
|
mpdan |
|
| 151 |
|
eqeq1 |
|
| 152 |
|
fveqeq2 |
|
| 153 |
151 152
|
3anbi12d |
|
| 154 |
153
|
rexbidv |
|
| 155 |
154
|
2rexbidv |
|
| 156 |
39 150 155
|
spcedv |
|
| 157 |
156
|
3exp |
|
| 158 |
157
|
3expd |
|
| 159 |
158
|
exlimdv |
|
| 160 |
159
|
impcomd |
|
| 161 |
160
|
exlimdv |
|
| 162 |
37 161
|
syld |
|
| 163 |
162
|
com13 |
|
| 164 |
163
|
imp |
|
| 165 |
9 18 164
|
3syl |
|
| 166 |
165
|
anabsi5 |
|
| 167 |
166
|
rexlimdvvva |
|
| 168 |
8 167
|
mpd |
|
| 169 |
10 13
|
isgrtri |
Could not format ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( t e. ( GrTriangles ` H ) <-> E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |- |
| 170 |
169
|
exbii |
Could not format ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) : No typesetting found for |- ( E. t t e. ( GrTriangles ` H ) <-> E. t E. x e. ( Vtx ` H ) E. y e. ( Vtx ` H ) E. z e. ( Vtx ` H ) ( t = { x , y , z } /\ ( # ` t ) = 3 /\ ( { x , y } e. ( Edg ` H ) /\ { x , z } e. ( Edg ` H ) /\ { y , z } e. ( Edg ` H ) ) ) ) with typecode |- |
| 171 |
168 170
|
sylibr |
Could not format ( ph -> E. t t e. ( GrTriangles ` H ) ) : No typesetting found for |- ( ph -> E. t t e. ( GrTriangles ` H ) ) with typecode |- |