Metamath Proof Explorer


Theorem gsumcom2

Description: Two-dimensional commutation of a group sum. Note that while A and D are constants w.r.t. j , k , C ( j ) and E ( k ) are not. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses gsum2d2.b B=BaseG
gsum2d2.z 0˙=0G
gsum2d2.g φGCMnd
gsum2d2.a φAV
gsum2d2.r φjACW
gsum2d2.f φjAkCXB
gsum2d2.u φUFin
gsum2d2.n φjAkC¬jUkX=0˙
gsumcom2.d φDY
gsumcom2.c φjAkCkDjE
Assertion gsumcom2 φGjA,kCX=GkD,jEX

Proof

Step Hyp Ref Expression
1 gsum2d2.b B=BaseG
2 gsum2d2.z 0˙=0G
3 gsum2d2.g φGCMnd
4 gsum2d2.a φAV
5 gsum2d2.r φjACW
6 gsum2d2.f φjAkCXB
7 gsum2d2.u φUFin
8 gsum2d2.n φjAkC¬jUkX=0˙
9 gsumcom2.d φDY
10 gsumcom2.c φjAkCkDjE
11 vsnex jV
12 xpexg jVCWj×CV
13 11 5 12 sylancr φjAj×CV
14 13 ralrimiva φjAj×CV
15 iunexg AVjAj×CVjAj×CV
16 4 14 15 syl2anc φjAj×CV
17 6 ralrimivva φjAkCXB
18 eqid jA,kCX=jA,kCX
19 18 fmpox jAkCXBjA,kCX:jAj×CB
20 17 19 sylib φjA,kCX:jAj×CB
21 1 2 3 4 5 6 7 8 gsum2d2lem φfinSupp0˙jA,kCX
22 relxp Relk×E
23 22 rgenw kDRelk×E
24 reliun RelkDk×EkDRelk×E
25 23 24 mpbir RelkDk×E
26 cnvf1o RelkDk×EzkDk×Ez-1:kDk×E1-1 ontokDk×E-1
27 25 26 ax-mp zkDk×Ez-1:kDk×E1-1 ontokDk×E-1
28 relxp Relj×C
29 28 rgenw jARelj×C
30 reliun ReljAj×CjARelj×C
31 29 30 mpbir ReljAj×C
32 relcnv RelkDk×E-1
33 nfv kφ
34 nfv kxyjAj×C
35 nfiu1 _kkDk×E
36 35 nfcnv _kkDk×E-1
37 36 nfel2 kxykDk×E-1
38 34 37 nfbi kxyjAj×CxykDk×E-1
39 33 38 nfim kφxyjAj×CxykDk×E-1
40 opeq2 k=yxk=xy
41 40 eleq1d k=yxkjAj×CxyjAj×C
42 40 eleq1d k=yxkkDk×E-1xykDk×E-1
43 41 42 bibi12d k=yxkjAj×CxkkDk×E-1xyjAj×CxykDk×E-1
44 43 imbi2d k=yφxkjAj×CxkkDk×E-1φxyjAj×CxykDk×E-1
45 nfv jφ
46 nfiu1 _jjAj×C
47 46 nfel2 jxkjAj×C
48 nfv jxkkDk×E-1
49 47 48 nfbi jxkjAj×CxkkDk×E-1
50 45 49 nfim jφxkjAj×CxkkDk×E-1
51 opeq1 j=xjk=xk
52 51 eleq1d j=xjkjAj×CxkjAj×C
53 51 eleq1d j=xjkkDk×E-1xkkDk×E-1
54 52 53 bibi12d j=xjkjAj×CjkkDk×E-1xkjAj×CxkkDk×E-1
55 54 imbi2d j=xφjkjAj×CjkkDk×E-1φxkjAj×CxkkDk×E-1
56 opeliunxp jkjAj×CjAkC
57 opeliunxp kjkDk×EkDjE
58 10 56 57 3bitr4g φjkjAj×CkjkDk×E
59 vex jV
60 vex kV
61 59 60 opelcnv jkkDk×E-1kjkDk×E
62 58 61 bitr4di φjkjAj×CjkkDk×E-1
63 50 55 62 chvarfv φxkjAj×CxkkDk×E-1
64 39 44 63 chvarfv φxyjAj×CxykDk×E-1
65 31 32 64 eqrelrdv φjAj×C=kDk×E-1
66 65 f1oeq3d φzkDk×Ez-1:kDk×E1-1 ontojAj×CzkDk×Ez-1:kDk×E1-1 ontokDk×E-1
67 27 66 mpbiri φzkDk×Ez-1:kDk×E1-1 ontojAj×C
68 1 2 3 16 20 21 67 gsumf1o φGjA,kCX=GjA,kCXzkDk×Ez-1
69 sneq z=xyz=xy
70 69 cnveqd z=xyz-1=xy-1
71 70 unieqd z=xyz-1=xy-1
72 opswap xy-1=yx
73 71 72 eqtrdi z=xyz-1=yx
74 73 fveq2d z=xyjA,kCXz-1=jA,kCXyx
75 df-ov yjA,kCXx=jA,kCXyx
76 74 75 eqtr4di z=xyjA,kCXz-1=yjA,kCXx
77 76 mpomptx zxDx×x/kEjA,kCXz-1=xD,yx/kEyjA,kCXx
78 nfcv _xk×E
79 nfcv _kx
80 nfcsb1v _kx/kE
81 79 80 nfxp _kx×x/kE
82 sneq k=xk=x
83 csbeq1a k=xE=x/kE
84 82 83 xpeq12d k=xk×E=x×x/kE
85 78 81 84 cbviun kDk×E=xDx×x/kE
86 85 mpteq1i zkDk×EjA,kCXz-1=zxDx×x/kEjA,kCXz-1
87 nfcv _xE
88 nfcv _xjjA,kCXk
89 nfcv _yjjA,kCXk
90 nfcv _ky
91 nfmpo2 _kjA,kCX
92 nfcv _kx
93 90 91 92 nfov _kyjA,kCXx
94 nfcv _jy
95 nfmpo1 _jjA,kCX
96 nfcv _jx
97 94 95 96 nfov _jyjA,kCXx
98 oveq2 k=xjjA,kCXk=jjA,kCXx
99 oveq1 j=yjjA,kCXx=yjA,kCXx
100 98 99 sylan9eq k=xj=yjjA,kCXk=yjA,kCXx
101 87 80 88 89 93 97 83 100 cbvmpox kD,jEjjA,kCXk=xD,yx/kEyjA,kCXx
102 77 86 101 3eqtr4i zkDk×EjA,kCXz-1=kD,jEjjA,kCXk
103 f1of zkDk×Ez-1:kDk×E1-1 ontojAj×CzkDk×Ez-1:kDk×EjAj×C
104 67 103 syl φzkDk×Ez-1:kDk×EjAj×C
105 eqid zkDk×Ez-1=zkDk×Ez-1
106 105 fmpt zkDk×Ez-1jAj×CzkDk×Ez-1:kDk×EjAj×C
107 104 106 sylibr φzkDk×Ez-1jAj×C
108 eqidd φzkDk×Ez-1=zkDk×Ez-1
109 20 feqmptd φjA,kCX=xjAj×CjA,kCXx
110 fveq2 x=z-1jA,kCXx=jA,kCXz-1
111 107 108 109 110 fmptcof φjA,kCXzkDk×Ez-1=zkDk×EjA,kCXz-1
112 6 ex φjAkCXB
113 18 ovmpt4g jAkCXBjjA,kCXk=X
114 113 3expia jAkCXBjjA,kCXk=X
115 112 114 sylcom φjAkCjjA,kCXk=X
116 10 115 sylbird φkDjEjjA,kCXk=X
117 116 3impib φkDjEjjA,kCXk=X
118 117 eqcomd φkDjEX=jjA,kCXk
119 118 mpoeq3dva φkD,jEX=kD,jEjjA,kCXk
120 102 111 119 3eqtr4a φjA,kCXzkDk×Ez-1=kD,jEX
121 120 oveq2d φGjA,kCXzkDk×Ez-1=GkD,jEX
122 68 121 eqtrd φGjA,kCX=GkD,jEX