Metamath Proof Explorer


Theorem gsumvsca2

Description: Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses gsumvsca.b B=BaseW
gsumvsca.g G=ScalarW
gsumvsca.z 0˙=0W
gsumvsca.t ·˙=W
gsumvsca.p +˙=+W
gsumvsca.k φKBaseG
gsumvsca.a φAFin
gsumvsca.w φWSLMod
gsumvsca2.n φQB
gsumvsca2.c φkAPK
Assertion gsumvsca2 φWkAP·˙Q=GkAP·˙Q

Proof

Step Hyp Ref Expression
1 gsumvsca.b B=BaseW
2 gsumvsca.g G=ScalarW
3 gsumvsca.z 0˙=0W
4 gsumvsca.t ·˙=W
5 gsumvsca.p +˙=+W
6 gsumvsca.k φKBaseG
7 gsumvsca.a φAFin
8 gsumvsca.w φWSLMod
9 gsumvsca2.n φQB
10 gsumvsca2.c φkAPK
11 ssid AA
12 sseq1 a=aAA
13 12 anbi2d a=φaAφA
14 mpteq1 a=kaP·˙Q=kP·˙Q
15 14 oveq2d a=WkaP·˙Q=WkP·˙Q
16 mpteq1 a=kaP=kP
17 16 oveq2d a=GkaP=GkP
18 17 oveq1d a=GkaP·˙Q=GkP·˙Q
19 15 18 eqeq12d a=WkaP·˙Q=GkaP·˙QWkP·˙Q=GkP·˙Q
20 13 19 imbi12d a=φaAWkaP·˙Q=GkaP·˙QφAWkP·˙Q=GkP·˙Q
21 sseq1 a=eaAeA
22 21 anbi2d a=eφaAφeA
23 mpteq1 a=ekaP·˙Q=keP·˙Q
24 23 oveq2d a=eWkaP·˙Q=WkeP·˙Q
25 mpteq1 a=ekaP=keP
26 25 oveq2d a=eGkaP=GkeP
27 26 oveq1d a=eGkaP·˙Q=GkeP·˙Q
28 24 27 eqeq12d a=eWkaP·˙Q=GkaP·˙QWkeP·˙Q=GkeP·˙Q
29 22 28 imbi12d a=eφaAWkaP·˙Q=GkaP·˙QφeAWkeP·˙Q=GkeP·˙Q
30 sseq1 a=ezaAezA
31 30 anbi2d a=ezφaAφezA
32 mpteq1 a=ezkaP·˙Q=kezP·˙Q
33 32 oveq2d a=ezWkaP·˙Q=WkezP·˙Q
34 mpteq1 a=ezkaP=kezP
35 34 oveq2d a=ezGkaP=GkezP
36 35 oveq1d a=ezGkaP·˙Q=GkezP·˙Q
37 33 36 eqeq12d a=ezWkaP·˙Q=GkaP·˙QWkezP·˙Q=GkezP·˙Q
38 31 37 imbi12d a=ezφaAWkaP·˙Q=GkaP·˙QφezAWkezP·˙Q=GkezP·˙Q
39 sseq1 a=AaAAA
40 39 anbi2d a=AφaAφAA
41 mpteq1 a=AkaP·˙Q=kAP·˙Q
42 41 oveq2d a=AWkaP·˙Q=WkAP·˙Q
43 mpteq1 a=AkaP=kAP
44 43 oveq2d a=AGkaP=GkAP
45 44 oveq1d a=AGkaP·˙Q=GkAP·˙Q
46 42 45 eqeq12d a=AWkaP·˙Q=GkaP·˙QWkAP·˙Q=GkAP·˙Q
47 40 46 imbi12d a=AφaAWkaP·˙Q=GkaP·˙QφAAWkAP·˙Q=GkAP·˙Q
48 eqid 0G=0G
49 1 2 4 48 3 slmd0vs WSLModQB0G·˙Q=0˙
50 8 9 49 syl2anc φ0G·˙Q=0˙
51 50 eqcomd φ0˙=0G·˙Q
52 mpt0 kP·˙Q=
53 52 oveq2i WkP·˙Q=W
54 3 gsum0 W=0˙
55 53 54 eqtri WkP·˙Q=0˙
56 mpt0 kP=
57 56 oveq2i GkP=G
58 48 gsum0 G=0G
59 57 58 eqtri GkP=0G
60 59 oveq1i GkP·˙Q=0G·˙Q
61 51 55 60 3eqtr4g φWkP·˙Q=GkP·˙Q
62 61 adantr φAWkP·˙Q=GkP·˙Q
63 ssun1 eez
64 sstr2 eezezAeA
65 63 64 ax-mp ezAeA
66 65 anim2i φezAφeA
67 66 imim1i φeAWkeP·˙Q=GkeP·˙QφezAWkeP·˙Q=GkeP·˙Q
68 8 ad2antrl eFin¬zeφezAWSLMod
69 eqid BaseG=BaseG
70 2 slmdsrg WSLModGSRing
71 srgcmn GSRingGCMnd
72 68 70 71 3syl eFin¬zeφezAGCMnd
73 vex eV
74 73 a1i eFin¬zeφezAeV
75 simplrl eFin¬zeφezAkeφ
76 simprr eFin¬zeφezAezA
77 76 unssad eFin¬zeφezAeA
78 77 sselda eFin¬zeφezAkekA
79 6 adantr φkAKBaseG
80 79 10 sseldd φkAPBaseG
81 75 78 80 syl2anc eFin¬zeφezAkePBaseG
82 81 fmpttd eFin¬zeφezAkeP:eBaseG
83 eqid keP=keP
84 simpll eFin¬zeφezAeFin
85 75 78 10 syl2anc eFin¬zeφezAkePK
86 fvexd eFin¬zeφezA0GV
87 83 84 85 86 fsuppmptdm eFin¬zeφezAfinSupp0GkeP
88 69 48 72 74 82 87 gsumcl eFin¬zeφezAGkePBaseG
89 76 unssbd eFin¬zeφezAzA
90 vex zV
91 90 snss zAzA
92 89 91 sylibr eFin¬zeφezAzA
93 80 ralrimiva φkAPBaseG
94 93 ad2antrl eFin¬zeφezAkAPBaseG
95 rspcsbela zAkAPBaseGz/kPBaseG
96 92 94 95 syl2anc eFin¬zeφezAz/kPBaseG
97 9 ad2antrl eFin¬zeφezAQB
98 eqid +G=+G
99 1 5 2 4 69 98 slmdvsdir WSLModGkePBaseGz/kPBaseGQBGkeP+Gz/kP·˙Q=GkeP·˙Q+˙z/kP·˙Q
100 68 88 96 97 99 syl13anc eFin¬zeφezAGkeP+Gz/kP·˙Q=GkeP·˙Q+˙z/kP·˙Q
101 100 adantr eFin¬zeφezAWkeP·˙Q=GkeP·˙QGkeP+Gz/kP·˙Q=GkeP·˙Q+˙z/kP·˙Q
102 nfcsb1v _kz/kP
103 90 a1i eFin¬zeφezAzV
104 simplr eFin¬zeφezA¬ze
105 csbeq1a k=zP=z/kP
106 102 69 98 72 84 81 103 104 96 105 gsumunsnf eFin¬zeφezAGkezP=GkeP+Gz/kP
107 106 oveq1d eFin¬zeφezAGkezP·˙Q=GkeP+Gz/kP·˙Q
108 107 adantr eFin¬zeφezAWkeP·˙Q=GkeP·˙QGkezP·˙Q=GkeP+Gz/kP·˙Q
109 nfcv _k·˙
110 nfcv _kQ
111 102 109 110 nfov _kz/kP·˙Q
112 slmdcmn WSLModWCMnd
113 68 112 syl eFin¬zeφezAWCMnd
114 75 8 syl eFin¬zeφezAkeWSLMod
115 75 9 syl eFin¬zeφezAkeQB
116 1 2 4 69 slmdvscl WSLModPBaseGQBP·˙QB
117 114 81 115 116 syl3anc eFin¬zeφezAkeP·˙QB
118 1 2 4 69 slmdvscl WSLModz/kPBaseGQBz/kP·˙QB
119 68 96 97 118 syl3anc eFin¬zeφezAz/kP·˙QB
120 105 oveq1d k=zP·˙Q=z/kP·˙Q
121 111 1 5 113 84 117 103 104 119 120 gsumunsnf eFin¬zeφezAWkezP·˙Q=WkeP·˙Q+˙z/kP·˙Q
122 121 adantr eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkezP·˙Q=WkeP·˙Q+˙z/kP·˙Q
123 simpr eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkeP·˙Q=GkeP·˙Q
124 123 oveq1d eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkeP·˙Q+˙z/kP·˙Q=GkeP·˙Q+˙z/kP·˙Q
125 122 124 eqtrd eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkezP·˙Q=GkeP·˙Q+˙z/kP·˙Q
126 101 108 125 3eqtr4rd eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkezP·˙Q=GkezP·˙Q
127 126 exp31 eFin¬zeφezAWkeP·˙Q=GkeP·˙QWkezP·˙Q=GkezP·˙Q
128 127 a2d eFin¬zeφezAWkeP·˙Q=GkeP·˙QφezAWkezP·˙Q=GkezP·˙Q
129 67 128 syl5 eFin¬zeφeAWkeP·˙Q=GkeP·˙QφezAWkezP·˙Q=GkezP·˙Q
130 20 29 38 47 62 129 findcard2s AFinφAAWkAP·˙Q=GkAP·˙Q
131 130 imp AFinφAAWkAP·˙Q=GkAP·˙Q
132 11 131 mpanr2 AFinφWkAP·˙Q=GkAP·˙Q
133 7 132 mpancom φWkAP·˙Q=GkAP·˙Q