Metamath Proof Explorer


Theorem gsumwspan

Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses gsumwspan.b B=BaseM
gsumwspan.k K=mrClsSubMndM
Assertion gsumwspan MMndGBKG=ranwWordGMw

Proof

Step Hyp Ref Expression
1 gsumwspan.b B=BaseM
2 gsumwspan.k K=mrClsSubMndM
3 1 submacs MMndSubMndMACSB
4 3 acsmred MMndSubMndMMooreB
5 4 adantr MMndGBSubMndMMooreB
6 simpr MMndGBxGxG
7 6 s1cld MMndGBxG⟨“x”⟩WordG
8 ssel2 GBxGxB
9 8 adantll MMndGBxGxB
10 1 gsumws1 xBM⟨“x”⟩=x
11 9 10 syl MMndGBxGM⟨“x”⟩=x
12 11 eqcomd MMndGBxGx=M⟨“x”⟩
13 oveq2 w=⟨“x”⟩Mw=M⟨“x”⟩
14 13 rspceeqv ⟨“x”⟩WordGx=M⟨“x”⟩wWordGx=Mw
15 7 12 14 syl2anc MMndGBxGwWordGx=Mw
16 eqid wWordGMw=wWordGMw
17 16 elrnmpt xVxranwWordGMwwWordGx=Mw
18 17 elv xranwWordGMwwWordGx=Mw
19 15 18 sylibr MMndGBxGxranwWordGMw
20 19 ex MMndGBxGxranwWordGMw
21 20 ssrdv MMndGBGranwWordGMw
22 2 mrccl SubMndMMooreBGBKGSubMndM
23 4 22 sylan MMndGBKGSubMndM
24 2 mrcssid SubMndMMooreBGBGKG
25 4 24 sylan MMndGBGKG
26 sswrd GKGWordGWordKG
27 25 26 syl MMndGBWordGWordKG
28 27 sselda MMndGBwWordGwWordKG
29 gsumwsubmcl KGSubMndMwWordKGMwKG
30 23 28 29 syl2an2r MMndGBwWordGMwKG
31 30 fmpttd MMndGBwWordGMw:WordGKG
32 31 frnd MMndGBranwWordGMwKG
33 4 2 mrcssvd MMndKGB
34 33 adantr MMndGBKGB
35 32 34 sstrd MMndGBranwWordGMwB
36 wrd0 WordG
37 eqid 0M=0M
38 37 gsum0 M=0M
39 38 eqcomi 0M=M
40 39 a1i MMndGB0M=M
41 oveq2 w=Mw=M
42 41 rspceeqv WordG0M=MwWordG0M=Mw
43 36 40 42 sylancr MMndGBwWordG0M=Mw
44 fvex 0MV
45 16 elrnmpt 0MV0MranwWordGMwwWordG0M=Mw
46 44 45 ax-mp 0MranwWordGMwwWordG0M=Mw
47 43 46 sylibr MMndGB0MranwWordGMw
48 ccatcl zWordGvWordGz++vWordG
49 simpll MMndGBzWordGvWordGMMnd
50 sswrd GBWordGWordB
51 50 ad2antlr MMndGBzWordGvWordGWordGWordB
52 simprl MMndGBzWordGvWordGzWordG
53 51 52 sseldd MMndGBzWordGvWordGzWordB
54 simprr MMndGBzWordGvWordGvWordG
55 51 54 sseldd MMndGBzWordGvWordGvWordB
56 eqid +M=+M
57 1 56 gsumccat MMndzWordBvWordBMz++v=Mz+MMv
58 49 53 55 57 syl3anc MMndGBzWordGvWordGMz++v=Mz+MMv
59 58 eqcomd MMndGBzWordGvWordGMz+MMv=Mz++v
60 oveq2 w=z++vMw=Mz++v
61 60 rspceeqv z++vWordGMz+MMv=Mz++vwWordGMz+MMv=Mw
62 48 59 61 syl2an2 MMndGBzWordGvWordGwWordGMz+MMv=Mw
63 ovex Mz+MMvV
64 16 elrnmpt Mz+MMvVMz+MMvranwWordGMwwWordGMz+MMv=Mw
65 63 64 ax-mp Mz+MMvranwWordGMwwWordGMz+MMv=Mw
66 62 65 sylibr MMndGBzWordGvWordGMz+MMvranwWordGMw
67 66 ralrimivva MMndGBzWordGvWordGMz+MMvranwWordGMw
68 oveq2 w=zMw=Mz
69 68 cbvmptv wWordGMw=zWordGMz
70 69 rneqi ranwWordGMw=ranzWordGMz
71 70 raleqi xranwWordGMwyranwWordGMwx+MyranwWordGMwxranzWordGMzyranwWordGMwx+MyranwWordGMw
72 oveq2 w=vMw=Mv
73 72 cbvmptv wWordGMw=vWordGMv
74 73 rneqi ranwWordGMw=ranvWordGMv
75 74 raleqi yranwWordGMwx+MyranwWordGMwyranvWordGMvx+MyranwWordGMw
76 eqid vWordGMv=vWordGMv
77 oveq2 y=Mvx+My=x+MMv
78 77 eleq1d y=Mvx+MyranwWordGMwx+MMvranwWordGMw
79 76 78 ralrnmptw vWordGMvVyranvWordGMvx+MyranwWordGMwvWordGx+MMvranwWordGMw
80 ovexd vWordGMvV
81 79 80 mprg yranvWordGMvx+MyranwWordGMwvWordGx+MMvranwWordGMw
82 75 81 bitri yranwWordGMwx+MyranwWordGMwvWordGx+MMvranwWordGMw
83 82 ralbii xranzWordGMzyranwWordGMwx+MyranwWordGMwxranzWordGMzvWordGx+MMvranwWordGMw
84 eqid zWordGMz=zWordGMz
85 oveq1 x=Mzx+MMv=Mz+MMv
86 85 eleq1d x=Mzx+MMvranwWordGMwMz+MMvranwWordGMw
87 86 ralbidv x=MzvWordGx+MMvranwWordGMwvWordGMz+MMvranwWordGMw
88 84 87 ralrnmptw zWordGMzVxranzWordGMzvWordGx+MMvranwWordGMwzWordGvWordGMz+MMvranwWordGMw
89 ovexd zWordGMzV
90 88 89 mprg xranzWordGMzvWordGx+MMvranwWordGMwzWordGvWordGMz+MMvranwWordGMw
91 71 83 90 3bitri xranwWordGMwyranwWordGMwx+MyranwWordGMwzWordGvWordGMz+MMvranwWordGMw
92 67 91 sylibr MMndGBxranwWordGMwyranwWordGMwx+MyranwWordGMw
93 1 37 56 issubm MMndranwWordGMwSubMndMranwWordGMwB0MranwWordGMwxranwWordGMwyranwWordGMwx+MyranwWordGMw
94 93 adantr MMndGBranwWordGMwSubMndMranwWordGMwB0MranwWordGMwxranwWordGMwyranwWordGMwx+MyranwWordGMw
95 35 47 92 94 mpbir3and MMndGBranwWordGMwSubMndM
96 2 mrcsscl SubMndMMooreBGranwWordGMwranwWordGMwSubMndMKGranwWordGMw
97 5 21 95 96 syl3anc MMndGBKGranwWordGMw
98 97 32 eqssd MMndGBKG=ranwWordGMw