Metamath Proof Explorer


Theorem harmonic

Description: The harmonic series H diverges. This fact follows from the stronger emcl , which establishes that the harmonic series grows as log n + gamma +o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses harmonic.1 F=n1n
harmonic.2 H=seq1+F
Assertion harmonic ¬Hdom

Proof

Step Hyp Ref Expression
1 harmonic.1 F=n1n
2 harmonic.2 H=seq1+F
3 nn0uz 0=0
4 0zd Hdom0
5 1ex 1V
6 5 fvconst2 k00×1k=1
7 6 adantl Hdomk00×1k=1
8 1red Hdomk01
9 2 eleq1i Hdomseq1+Fdom
10 9 biimpi Hdomseq1+Fdom
11 oveq2 n=k1n=1k
12 ovex 1kV
13 11 1 12 fvmpt kFk=1k
14 nnrecre k1k
15 13 14 eqeltrd kFk
16 15 adantl HdomkFk
17 nnrp kk+
18 17 rpreccld k1k+
19 18 rpge0d k01k
20 19 13 breqtrrd k0Fk
21 20 adantl Hdomk0Fk
22 nnre kk
23 22 lep1d kkk+1
24 nngt0 k0<k
25 peano2re kk+1
26 22 25 syl kk+1
27 peano2nn kk+1
28 27 nngt0d k0<k+1
29 lerec k0<kk+10<k+1kk+11k+11k
30 22 24 26 28 29 syl22anc kkk+11k+11k
31 23 30 mpbid k1k+11k
32 oveq2 n=k+11n=1k+1
33 ovex 1k+1V
34 32 1 33 fvmpt k+1Fk+1=1k+1
35 27 34 syl kFk+1=1k+1
36 31 35 13 3brtr4d kFk+1Fk
37 36 adantl HdomkFk+1Fk
38 oveq2 k=j2k=2j
39 38 fveq2d k=jF2k=F2j
40 38 39 oveq12d k=j2kF2k=2jF2j
41 fconstmpt 0×1=k01
42 2nn 2
43 nnexpcl 2k02k
44 42 43 mpan k02k
45 oveq2 n=2k1n=12k
46 ovex 12kV
47 45 1 46 fvmpt 2kF2k=12k
48 44 47 syl k0F2k=12k
49 48 oveq2d k02kF2k=2k12k
50 nncn 2k2k
51 nnne0 2k2k0
52 50 51 recidd 2k2k12k=1
53 44 52 syl k02k12k=1
54 49 53 eqtrd k02kF2k=1
55 54 mpteq2ia k02kF2k=k01
56 41 55 eqtr4i 0×1=k02kF2k
57 ovex 2jF2jV
58 40 56 57 fvmpt j00×1j=2jF2j
59 58 adantl Hdomj00×1j=2jF2j
60 16 21 37 59 climcnds Hdomseq1+Fdomseq0+0×1dom
61 10 60 mpbid Hdomseq0+0×1dom
62 3 4 7 8 61 isumrecl Hdomk01
63 arch k01jk01<j
64 62 63 syl Hdomjk01<j
65 fzfid Hdomj1jFin
66 ax-1cn 1
67 fsumconst 1jFin1k=1j1=1j1
68 65 66 67 sylancl Hdomjk=1j1=1j1
69 nnnn0 jj0
70 69 adantl Hdomjj0
71 hashfz1 j01j=j
72 70 71 syl Hdomj1j=j
73 72 oveq1d Hdomj1j1=j1
74 nncn jj
75 74 adantl Hdomjj
76 75 mulridd Hdomjj1=j
77 68 73 76 3eqtrd Hdomjk=1j1=j
78 0zd Hdomj0
79 elfznn k1jk
80 nnnn0 kk0
81 79 80 syl k1jk0
82 81 ssriv 1j0
83 82 a1i Hdomj1j0
84 6 adantl Hdomjk00×1k=1
85 1red Hdomjk01
86 0le1 01
87 86 a1i Hdomjk001
88 61 adantr Hdomjseq0+0×1dom
89 3 78 65 83 84 85 87 88 isumless Hdomjk=1j1k01
90 77 89 eqbrtrrd Hdomjjk01
91 nnre jj
92 lenlt jk01jk01¬k01<j
93 91 62 92 syl2anr Hdomjjk01¬k01<j
94 90 93 mpbid Hdomj¬k01<j
95 94 nrexdv Hdom¬jk01<j
96 64 95 pm2.65i ¬Hdom