| Step | Hyp | Ref | Expression | 
						
							| 1 |  | harmonic.1 |  | 
						
							| 2 |  | harmonic.2 |  | 
						
							| 3 |  | nn0uz |  | 
						
							| 4 |  | 0zd |  | 
						
							| 5 |  | 1ex |  | 
						
							| 6 | 5 | fvconst2 |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | 1red |  | 
						
							| 9 | 2 | eleq1i |  | 
						
							| 10 | 9 | biimpi |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 |  | ovex |  | 
						
							| 13 | 11 1 12 | fvmpt |  | 
						
							| 14 |  | nnrecre |  | 
						
							| 15 | 13 14 | eqeltrd |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | nnrp |  | 
						
							| 18 | 17 | rpreccld |  | 
						
							| 19 | 18 | rpge0d |  | 
						
							| 20 | 19 13 | breqtrrd |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | nnre |  | 
						
							| 23 | 22 | lep1d |  | 
						
							| 24 |  | nngt0 |  | 
						
							| 25 |  | peano2re |  | 
						
							| 26 | 22 25 | syl |  | 
						
							| 27 |  | peano2nn |  | 
						
							| 28 | 27 | nngt0d |  | 
						
							| 29 |  | lerec |  | 
						
							| 30 | 22 24 26 28 29 | syl22anc |  | 
						
							| 31 | 23 30 | mpbid |  | 
						
							| 32 |  | oveq2 |  | 
						
							| 33 |  | ovex |  | 
						
							| 34 | 32 1 33 | fvmpt |  | 
						
							| 35 | 27 34 | syl |  | 
						
							| 36 | 31 35 13 | 3brtr4d |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | fveq2d |  | 
						
							| 40 | 38 39 | oveq12d |  | 
						
							| 41 |  | fconstmpt |  | 
						
							| 42 |  | 2nn |  | 
						
							| 43 |  | nnexpcl |  | 
						
							| 44 | 42 43 | mpan |  | 
						
							| 45 |  | oveq2 |  | 
						
							| 46 |  | ovex |  | 
						
							| 47 | 45 1 46 | fvmpt |  | 
						
							| 48 | 44 47 | syl |  | 
						
							| 49 | 48 | oveq2d |  | 
						
							| 50 |  | nncn |  | 
						
							| 51 |  | nnne0 |  | 
						
							| 52 | 50 51 | recidd |  | 
						
							| 53 | 44 52 | syl |  | 
						
							| 54 | 49 53 | eqtrd |  | 
						
							| 55 | 54 | mpteq2ia |  | 
						
							| 56 | 41 55 | eqtr4i |  | 
						
							| 57 |  | ovex |  | 
						
							| 58 | 40 56 57 | fvmpt |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 16 21 37 59 | climcnds |  | 
						
							| 61 | 10 60 | mpbid |  | 
						
							| 62 | 3 4 7 8 61 | isumrecl |  | 
						
							| 63 |  | arch |  | 
						
							| 64 | 62 63 | syl |  | 
						
							| 65 |  | fzfid |  | 
						
							| 66 |  | ax-1cn |  | 
						
							| 67 |  | fsumconst |  | 
						
							| 68 | 65 66 67 | sylancl |  | 
						
							| 69 |  | nnnn0 |  | 
						
							| 70 | 69 | adantl |  | 
						
							| 71 |  | hashfz1 |  | 
						
							| 72 | 70 71 | syl |  | 
						
							| 73 | 72 | oveq1d |  | 
						
							| 74 |  | nncn |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 75 | mulridd |  | 
						
							| 77 | 68 73 76 | 3eqtrd |  | 
						
							| 78 |  | 0zd |  | 
						
							| 79 |  | elfznn |  | 
						
							| 80 |  | nnnn0 |  | 
						
							| 81 | 79 80 | syl |  | 
						
							| 82 | 81 | ssriv |  | 
						
							| 83 | 82 | a1i |  | 
						
							| 84 | 6 | adantl |  | 
						
							| 85 |  | 1red |  | 
						
							| 86 |  | 0le1 |  | 
						
							| 87 | 86 | a1i |  | 
						
							| 88 | 61 | adantr |  | 
						
							| 89 | 3 78 65 83 84 85 87 88 | isumless |  | 
						
							| 90 | 77 89 | eqbrtrrd |  | 
						
							| 91 |  | nnre |  | 
						
							| 92 |  | lenlt |  | 
						
							| 93 | 91 62 92 | syl2anr |  | 
						
							| 94 | 90 93 | mpbid |  | 
						
							| 95 | 94 | nrexdv |  | 
						
							| 96 | 64 95 | pm2.65i |  |