Metamath Proof Explorer


Theorem iblabsnc

Description: Choice-free analogue of iblabs . As with ibladdnc , a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017)

Ref Expression
Hypotheses iblabsnc.1 φ x A B V
iblabsnc.2 φ x A B 𝐿 1
iblabsnc.m φ x A B MblFn
Assertion iblabsnc φ x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 iblabsnc.1 φ x A B V
2 iblabsnc.2 φ x A B 𝐿 1
3 iblabsnc.m φ x A B MblFn
4 iblmbf x A B 𝐿 1 x A B MblFn
5 2 4 syl φ x A B MblFn
6 5 1 mbfmptcl φ x A B
7 6 abscld φ x A B
8 7 rexrd φ x A B *
9 6 absge0d φ x A 0 B
10 elxrge0 B 0 +∞ B * 0 B
11 8 9 10 sylanbrc φ x A B 0 +∞
12 0e0iccpnf 0 0 +∞
13 12 a1i φ ¬ x A 0 0 +∞
14 11 13 ifclda φ if x A B 0 0 +∞
15 14 adantr φ x if x A B 0 0 +∞
16 15 fmpttd φ x if x A B 0 : 0 +∞
17 reex V
18 17 a1i φ V
19 6 recld φ x A B
20 19 recnd φ x A B
21 20 abscld φ x A B
22 20 absge0d φ x A 0 B
23 elrege0 B 0 +∞ B 0 B
24 21 22 23 sylanbrc φ x A B 0 +∞
25 0e0icopnf 0 0 +∞
26 25 a1i φ ¬ x A 0 0 +∞
27 24 26 ifclda φ if x A B 0 0 +∞
28 27 adantr φ x if x A B 0 0 +∞
29 6 imcld φ x A B
30 29 recnd φ x A B
31 30 abscld φ x A B
32 30 absge0d φ x A 0 B
33 elrege0 B 0 +∞ B 0 B
34 31 32 33 sylanbrc φ x A B 0 +∞
35 34 26 ifclda φ if x A B 0 0 +∞
36 35 adantr φ x if x A B 0 0 +∞
37 eqidd φ x if x A B 0 = x if x A B 0
38 eqidd φ x if x A B 0 = x if x A B 0
39 18 28 36 37 38 offval2 φ x if x A B 0 + f x if x A B 0 = x if x A B 0 + if x A B 0
40 iftrue x A if x A B 0 = B
41 iftrue x A if x A B 0 = B
42 40 41 oveq12d x A if x A B 0 + if x A B 0 = B + B
43 iftrue x A if x A B + B 0 = B + B
44 42 43 eqtr4d x A if x A B 0 + if x A B 0 = if x A B + B 0
45 00id 0 + 0 = 0
46 iffalse ¬ x A if x A B 0 = 0
47 iffalse ¬ x A if x A B 0 = 0
48 46 47 oveq12d ¬ x A if x A B 0 + if x A B 0 = 0 + 0
49 iffalse ¬ x A if x A B + B 0 = 0
50 45 48 49 3eqtr4a ¬ x A if x A B 0 + if x A B 0 = if x A B + B 0
51 44 50 pm2.61i if x A B 0 + if x A B 0 = if x A B + B 0
52 51 mpteq2i x if x A B 0 + if x A B 0 = x if x A B + B 0
53 39 52 eqtr2di φ x if x A B + B 0 = x if x A B 0 + f x if x A B 0
54 53 fveq2d φ 2 x if x A B + B 0 = 2 x if x A B 0 + f x if x A B 0
55 eqid x if x A B 0 = x if x A B 0
56 6 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
57 2 56 mpbid φ x A B 𝐿 1 x A B 𝐿 1
58 57 simpld φ x A B 𝐿 1
59 1 2 55 58 19 iblabsnclem φ x if x A B 0 MblFn 2 x if x A B 0
60 59 simpld φ x if x A B 0 MblFn
61 28 fmpttd φ x if x A B 0 : 0 +∞
62 59 simprd φ 2 x if x A B 0
63 36 fmpttd φ x if x A B 0 : 0 +∞
64 eqid x if x A B 0 = x if x A B 0
65 57 simprd φ x A B 𝐿 1
66 1 2 64 65 29 iblabsnclem φ x if x A B 0 MblFn 2 x if x A B 0
67 66 simprd φ 2 x if x A B 0
68 60 61 62 63 67 itg2addnc φ 2 x if x A B 0 + f x if x A B 0 = 2 x if x A B 0 + 2 x if x A B 0
69 54 68 eqtrd φ 2 x if x A B + B 0 = 2 x if x A B 0 + 2 x if x A B 0
70 62 67 readdcld φ 2 x if x A B 0 + 2 x if x A B 0
71 69 70 eqeltrd φ 2 x if x A B + B 0
72 21 31 readdcld φ x A B + B
73 72 rexrd φ x A B + B *
74 21 31 22 32 addge0d φ x A 0 B + B
75 elxrge0 B + B 0 +∞ B + B * 0 B + B
76 73 74 75 sylanbrc φ x A B + B 0 +∞
77 76 13 ifclda φ if x A B + B 0 0 +∞
78 77 adantr φ x if x A B + B 0 0 +∞
79 78 fmpttd φ x if x A B + B 0 : 0 +∞
80 ax-icn i
81 mulcl i B i B
82 80 30 81 sylancr φ x A i B
83 20 82 abstrid φ x A B + i B B + i B
84 iftrue x A if x A B 0 = B
85 84 adantl φ x A if x A B 0 = B
86 6 replimd φ x A B = B + i B
87 86 fveq2d φ x A B = B + i B
88 85 87 eqtrd φ x A if x A B 0 = B + i B
89 43 adantl φ x A if x A B + B 0 = B + B
90 absmul i B i B = i B
91 80 30 90 sylancr φ x A i B = i B
92 absi i = 1
93 92 oveq1i i B = 1 B
94 31 recnd φ x A B
95 94 mulid2d φ x A 1 B = B
96 93 95 syl5eq φ x A i B = B
97 91 96 eqtr2d φ x A B = i B
98 97 oveq2d φ x A B + B = B + i B
99 89 98 eqtrd φ x A if x A B + B 0 = B + i B
100 83 88 99 3brtr4d φ x A if x A B 0 if x A B + B 0
101 100 ex φ x A if x A B 0 if x A B + B 0
102 0le0 0 0
103 102 a1i ¬ x A 0 0
104 iffalse ¬ x A if x A B 0 = 0
105 103 104 49 3brtr4d ¬ x A if x A B 0 if x A B + B 0
106 101 105 pm2.61d1 φ if x A B 0 if x A B + B 0
107 106 ralrimivw φ x if x A B 0 if x A B + B 0
108 eqidd φ x if x A B 0 = x if x A B 0
109 eqidd φ x if x A B + B 0 = x if x A B + B 0
110 18 15 78 108 109 ofrfval2 φ x if x A B 0 f x if x A B + B 0 x if x A B 0 if x A B + B 0
111 107 110 mpbird φ x if x A B 0 f x if x A B + B 0
112 itg2le x if x A B 0 : 0 +∞ x if x A B + B 0 : 0 +∞ x if x A B 0 f x if x A B + B 0 2 x if x A B 0 2 x if x A B + B 0
113 16 79 111 112 syl3anc φ 2 x if x A B 0 2 x if x A B + B 0
114 itg2lecl x if x A B 0 : 0 +∞ 2 x if x A B + B 0 2 x if x A B 0 2 x if x A B + B 0 2 x if x A B 0
115 16 71 113 114 syl3anc φ 2 x if x A B 0
116 7 9 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
117 3 115 116 mpbir2and φ x A B 𝐿 1