| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpnfhmeo.f |
|
| 2 |
|
0xr |
|
| 3 |
|
pnfxr |
|
| 4 |
|
0lepnf |
|
| 5 |
|
ubicc2 |
|
| 6 |
2 3 4 5
|
mp3an |
|
| 7 |
6
|
a1i |
|
| 8 |
|
icossicc |
|
| 9 |
|
1xr |
|
| 10 |
|
0le1 |
|
| 11 |
|
snunico |
|
| 12 |
2 9 10 11
|
mp3an |
|
| 13 |
12
|
eleq2i |
|
| 14 |
|
elun |
|
| 15 |
13 14
|
bitr3i |
|
| 16 |
|
pm2.53 |
|
| 17 |
15 16
|
sylbi |
|
| 18 |
|
elsni |
|
| 19 |
17 18
|
syl6 |
|
| 20 |
19
|
con1d |
|
| 21 |
20
|
imp |
|
| 22 |
|
eqid |
|
| 23 |
22
|
icopnfcnv |
|
| 24 |
23
|
simpli |
|
| 25 |
|
f1of |
|
| 26 |
24 25
|
ax-mp |
|
| 27 |
22
|
fmpt |
|
| 28 |
26 27
|
mpbir |
|
| 29 |
28
|
rspec |
|
| 30 |
21 29
|
syl |
|
| 31 |
8 30
|
sselid |
|
| 32 |
7 31
|
ifclda |
|
| 33 |
32
|
adantl |
|
| 34 |
|
1elunit |
|
| 35 |
34
|
a1i |
|
| 36 |
|
icossicc |
|
| 37 |
|
snunico |
|
| 38 |
2 3 4 37
|
mp3an |
|
| 39 |
38
|
eleq2i |
|
| 40 |
|
elun |
|
| 41 |
39 40
|
bitr3i |
|
| 42 |
|
pm2.53 |
|
| 43 |
41 42
|
sylbi |
|
| 44 |
|
elsni |
|
| 45 |
43 44
|
syl6 |
|
| 46 |
45
|
con1d |
|
| 47 |
46
|
imp |
|
| 48 |
|
f1ocnv |
|
| 49 |
|
f1of |
|
| 50 |
24 48 49
|
mp2b |
|
| 51 |
23
|
simpri |
|
| 52 |
51
|
fmpt |
|
| 53 |
50 52
|
mpbir |
|
| 54 |
53
|
rspec |
|
| 55 |
47 54
|
syl |
|
| 56 |
36 55
|
sselid |
|
| 57 |
35 56
|
ifclda |
|
| 58 |
57
|
adantl |
|
| 59 |
|
eqeq2 |
|
| 60 |
59
|
bibi1d |
|
| 61 |
|
eqeq2 |
|
| 62 |
61
|
bibi1d |
|
| 63 |
|
simpr |
|
| 64 |
|
iftrue |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
63 65
|
syl5ibrcom |
|
| 67 |
|
pnfnre |
|
| 68 |
|
neleq1 |
|
| 69 |
68
|
adantl |
|
| 70 |
67 69
|
mpbiri |
|
| 71 |
|
neleq1 |
|
| 72 |
70 71
|
syl5ibcom |
|
| 73 |
|
df-nel |
|
| 74 |
|
iffalse |
|
| 75 |
74
|
adantl |
|
| 76 |
|
rge0ssre |
|
| 77 |
76 30
|
sselid |
|
| 78 |
75 77
|
eqeltrd |
|
| 79 |
78
|
ex |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
80
|
con1d |
|
| 82 |
73 81
|
biimtrid |
|
| 83 |
72 82
|
syld |
|
| 84 |
66 83
|
impbid |
|
| 85 |
|
eqeq2 |
|
| 86 |
85
|
bibi2d |
|
| 87 |
|
eqeq2 |
|
| 88 |
87
|
bibi2d |
|
| 89 |
|
0re |
|
| 90 |
|
elico2 |
|
| 91 |
89 9 90
|
mp2an |
|
| 92 |
55 91
|
sylib |
|
| 93 |
92
|
simp1d |
|
| 94 |
92
|
simp3d |
|
| 95 |
93 94
|
gtned |
|
| 96 |
95
|
adantll |
|
| 97 |
96
|
neneqd |
|
| 98 |
|
eqeq1 |
|
| 99 |
98
|
notbid |
|
| 100 |
97 99
|
syl5ibrcom |
|
| 101 |
100
|
imp |
|
| 102 |
|
simplr |
|
| 103 |
101 102
|
2falsed |
|
| 104 |
|
f1ocnvfvb |
|
| 105 |
24 104
|
mp3an1 |
|
| 106 |
|
simpl |
|
| 107 |
|
ovex |
|
| 108 |
22
|
fvmpt2 |
|
| 109 |
106 107 108
|
sylancl |
|
| 110 |
109
|
eqeq1d |
|
| 111 |
|
simpr |
|
| 112 |
|
ovex |
|
| 113 |
51
|
fvmpt2 |
|
| 114 |
111 112 113
|
sylancl |
|
| 115 |
114
|
eqeq1d |
|
| 116 |
105 110 115
|
3bitr3rd |
|
| 117 |
|
eqcom |
|
| 118 |
|
eqcom |
|
| 119 |
116 117 118
|
3bitr4g |
|
| 120 |
21 47 119
|
syl2an |
|
| 121 |
120
|
an4s |
|
| 122 |
121
|
anass1rs |
|
| 123 |
86 88 103 122
|
ifbothda |
|
| 124 |
60 62 84 123
|
ifbothda |
|
| 125 |
124
|
adantl |
|
| 126 |
1 33 58 125
|
f1ocnv2d |
|
| 127 |
126
|
mptru |
|