Metamath Proof Explorer


Theorem iccpnfcnv

Description: Define a bijection from [ 0 , 1 ] to [ 0 , +oo ] . (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis iccpnfhmeo.f F=x01ifx=1+∞x1x
Assertion iccpnfcnv F:011-1 onto0+∞F-1=y0+∞ify=+∞1y1+y

Proof

Step Hyp Ref Expression
1 iccpnfhmeo.f F=x01ifx=1+∞x1x
2 0xr 0*
3 pnfxr +∞*
4 0lepnf 0+∞
5 ubicc2 0*+∞*0+∞+∞0+∞
6 2 3 4 5 mp3an +∞0+∞
7 6 a1i x01x=1+∞0+∞
8 icossicc 0+∞0+∞
9 1xr 1*
10 0le1 01
11 snunico 0*1*01011=01
12 2 9 10 11 mp3an 011=01
13 12 eleq2i x011x01
14 elun x011x01x1
15 13 14 bitr3i x01x01x1
16 pm2.53 x01x1¬x01x1
17 15 16 sylbi x01¬x01x1
18 elsni x1x=1
19 17 18 syl6 x01¬x01x=1
20 19 con1d x01¬x=1x01
21 20 imp x01¬x=1x01
22 eqid x01x1x=x01x1x
23 22 icopnfcnv x01x1x:011-1 onto0+∞x01x1x-1=y0+∞y1+y
24 23 simpli x01x1x:011-1 onto0+∞
25 f1of x01x1x:011-1 onto0+∞x01x1x:010+∞
26 24 25 ax-mp x01x1x:010+∞
27 22 fmpt x01x1x0+∞x01x1x:010+∞
28 26 27 mpbir x01x1x0+∞
29 28 rspec x01x1x0+∞
30 21 29 syl x01¬x=1x1x0+∞
31 8 30 sselid x01¬x=1x1x0+∞
32 7 31 ifclda x01ifx=1+∞x1x0+∞
33 32 adantl x01ifx=1+∞x1x0+∞
34 1elunit 101
35 34 a1i y0+∞y=+∞101
36 icossicc 0101
37 snunico 0*+∞*0+∞0+∞+∞=0+∞
38 2 3 4 37 mp3an 0+∞+∞=0+∞
39 38 eleq2i y0+∞+∞y0+∞
40 elun y0+∞+∞y0+∞y+∞
41 39 40 bitr3i y0+∞y0+∞y+∞
42 pm2.53 y0+∞y+∞¬y0+∞y+∞
43 41 42 sylbi y0+∞¬y0+∞y+∞
44 elsni y+∞y=+∞
45 43 44 syl6 y0+∞¬y0+∞y=+∞
46 45 con1d y0+∞¬y=+∞y0+∞
47 46 imp y0+∞¬y=+∞y0+∞
48 f1ocnv x01x1x:011-1 onto0+∞x01x1x-1:0+∞1-1 onto01
49 f1of x01x1x-1:0+∞1-1 onto01x01x1x-1:0+∞01
50 24 48 49 mp2b x01x1x-1:0+∞01
51 23 simpri x01x1x-1=y0+∞y1+y
52 51 fmpt y0+∞y1+y01x01x1x-1:0+∞01
53 50 52 mpbir y0+∞y1+y01
54 53 rspec y0+∞y1+y01
55 47 54 syl y0+∞¬y=+∞y1+y01
56 36 55 sselid y0+∞¬y=+∞y1+y01
57 35 56 ifclda y0+∞ify=+∞1y1+y01
58 57 adantl y0+∞ify=+∞1y1+y01
59 eqeq2 1=ify=+∞1y1+yx=1x=ify=+∞1y1+y
60 59 bibi1d 1=ify=+∞1y1+yx=1y=ifx=1+∞x1xx=ify=+∞1y1+yy=ifx=1+∞x1x
61 eqeq2 y1+y=ify=+∞1y1+yx=y1+yx=ify=+∞1y1+y
62 61 bibi1d y1+y=ify=+∞1y1+yx=y1+yy=ifx=1+∞x1xx=ify=+∞1y1+yy=ifx=1+∞x1x
63 simpr x01y0+∞y=+∞y=+∞
64 iftrue x=1ifx=1+∞x1x=+∞
65 64 eqeq2d x=1y=ifx=1+∞x1xy=+∞
66 63 65 syl5ibrcom x01y0+∞y=+∞x=1y=ifx=1+∞x1x
67 pnfnre +∞
68 neleq1 y=+∞y+∞
69 68 adantl x01y0+∞y=+∞y+∞
70 67 69 mpbiri x01y0+∞y=+∞y
71 neleq1 y=ifx=1+∞x1xyifx=1+∞x1x
72 70 71 syl5ibcom x01y0+∞y=+∞y=ifx=1+∞x1xifx=1+∞x1x
73 df-nel ifx=1+∞x1x¬ifx=1+∞x1x
74 iffalse ¬x=1ifx=1+∞x1x=x1x
75 74 adantl x01¬x=1ifx=1+∞x1x=x1x
76 rge0ssre 0+∞
77 76 30 sselid x01¬x=1x1x
78 75 77 eqeltrd x01¬x=1ifx=1+∞x1x
79 78 ex x01¬x=1ifx=1+∞x1x
80 79 ad2antrr x01y0+∞y=+∞¬x=1ifx=1+∞x1x
81 80 con1d x01y0+∞y=+∞¬ifx=1+∞x1xx=1
82 73 81 biimtrid x01y0+∞y=+∞ifx=1+∞x1xx=1
83 72 82 syld x01y0+∞y=+∞y=ifx=1+∞x1xx=1
84 66 83 impbid x01y0+∞y=+∞x=1y=ifx=1+∞x1x
85 eqeq2 +∞=ifx=1+∞x1xy=+∞y=ifx=1+∞x1x
86 85 bibi2d +∞=ifx=1+∞x1xx=y1+yy=+∞x=y1+yy=ifx=1+∞x1x
87 eqeq2 x1x=ifx=1+∞x1xy=x1xy=ifx=1+∞x1x
88 87 bibi2d x1x=ifx=1+∞x1xx=y1+yy=x1xx=y1+yy=ifx=1+∞x1x
89 0re 0
90 elico2 01*y1+y01y1+y0y1+yy1+y<1
91 89 9 90 mp2an y1+y01y1+y0y1+yy1+y<1
92 55 91 sylib y0+∞¬y=+∞y1+y0y1+yy1+y<1
93 92 simp1d y0+∞¬y=+∞y1+y
94 92 simp3d y0+∞¬y=+∞y1+y<1
95 93 94 gtned y0+∞¬y=+∞1y1+y
96 95 adantll x01y0+∞¬y=+∞1y1+y
97 96 neneqd x01y0+∞¬y=+∞¬1=y1+y
98 eqeq1 x=1x=y1+y1=y1+y
99 98 notbid x=1¬x=y1+y¬1=y1+y
100 97 99 syl5ibrcom x01y0+∞¬y=+∞x=1¬x=y1+y
101 100 imp x01y0+∞¬y=+∞x=1¬x=y1+y
102 simplr x01y0+∞¬y=+∞x=1¬y=+∞
103 101 102 2falsed x01y0+∞¬y=+∞x=1x=y1+yy=+∞
104 f1ocnvfvb x01x1x:011-1 onto0+∞x01y0+∞x01x1xx=yx01x1x-1y=x
105 24 104 mp3an1 x01y0+∞x01x1xx=yx01x1x-1y=x
106 simpl x01y0+∞x01
107 ovex x1xV
108 22 fvmpt2 x01x1xVx01x1xx=x1x
109 106 107 108 sylancl x01y0+∞x01x1xx=x1x
110 109 eqeq1d x01y0+∞x01x1xx=yx1x=y
111 simpr x01y0+∞y0+∞
112 ovex y1+yV
113 51 fvmpt2 y0+∞y1+yVx01x1x-1y=y1+y
114 111 112 113 sylancl x01y0+∞x01x1x-1y=y1+y
115 114 eqeq1d x01y0+∞x01x1x-1y=xy1+y=x
116 105 110 115 3bitr3rd x01y0+∞y1+y=xx1x=y
117 eqcom x=y1+yy1+y=x
118 eqcom y=x1xx1x=y
119 116 117 118 3bitr4g x01y0+∞x=y1+yy=x1x
120 21 47 119 syl2an x01¬x=1y0+∞¬y=+∞x=y1+yy=x1x
121 120 an4s x01y0+∞¬x=1¬y=+∞x=y1+yy=x1x
122 121 anass1rs x01y0+∞¬y=+∞¬x=1x=y1+yy=x1x
123 86 88 103 122 ifbothda x01y0+∞¬y=+∞x=y1+yy=ifx=1+∞x1x
124 60 62 84 123 ifbothda x01y0+∞x=ify=+∞1y1+yy=ifx=1+∞x1x
125 124 adantl x01y0+∞x=ify=+∞1y1+yy=ifx=1+∞x1x
126 1 33 58 125 f1ocnv2d F:011-1 onto0+∞F-1=y0+∞ify=+∞1y1+y
127 126 mptru F:011-1 onto0+∞F-1=y0+∞ify=+∞1y1+y