Metamath Proof Explorer


Theorem inlinecirc02plem

Description: Lemma for inlinecirc02p . (Contributed by AV, 7-May-2023) (Revised by AV, 15-May-2023)

Ref Expression
Hypotheses inlinecirc02p.i I=12
inlinecirc02p.e E=msup
inlinecirc02p.p P=I
inlinecirc02p.s S=SphereE
inlinecirc02p.0 0˙=I×0
inlinecirc02p.l L=LineME
inlinecirc02plem.q Q=A2+B2
inlinecirc02plem.d D=R2QC2
inlinecirc02plem.a A=X2Y2
inlinecirc02plem.b B=Y1X1
inlinecirc02plem.c C=X2Y1X1Y2
Assertion inlinecirc02plem XPYPXYR+0<DaPbP0˙SRXLY=abab

Proof

Step Hyp Ref Expression
1 inlinecirc02p.i I=12
2 inlinecirc02p.e E=msup
3 inlinecirc02p.p P=I
4 inlinecirc02p.s S=SphereE
5 inlinecirc02p.0 0˙=I×0
6 inlinecirc02p.l L=LineME
7 inlinecirc02plem.q Q=A2+B2
8 inlinecirc02plem.d D=R2QC2
9 inlinecirc02plem.a A=X2Y2
10 inlinecirc02plem.b B=Y1X1
11 inlinecirc02plem.c C=X2Y1X1Y2
12 simprr XPYPXYR+0<D0<D
13 12 gt0ne0d XPYPXYR+0<DD0
14 1 3 rrx2pyel XPX2
15 14 adantr XPYPX2
16 1 3 rrx2pyel YPY2
17 16 adantl XPYPY2
18 15 17 resubcld XPYPX2Y2
19 9 18 eqeltrid XPYPA
20 19 3adant3 XPYPXYA
21 20 adantr XPYPXYR+0<DA
22 1 3 rrx2pxel YPY1
23 22 adantl XPYPY1
24 1 3 rrx2pxel XPX1
25 24 adantr XPYPX1
26 23 25 resubcld XPYPY1X1
27 10 26 eqeltrid XPYPB
28 27 3adant3 XPYPXYB
29 28 adantr XPYPXYR+0<DB
30 15 23 remulcld XPYPX2Y1
31 25 17 remulcld XPYPX1Y2
32 30 31 resubcld XPYPX2Y1X1Y2
33 11 32 eqeltrid XPYPC
34 33 3adant3 XPYPXYC
35 34 adantr XPYPXYR+0<DC
36 19 27 33 3jca XPYPABC
37 36 3adant3 XPYPXYABC
38 rpre R+R
39 38 adantr R+0<DR
40 7 8 itsclc0lem3 ABCRD
41 37 39 40 syl2an XPYPXYR+0<DD
42 41 12 elrpd XPYPXYR+0<DD+
43 42 rprege0d XPYPXYR+0<DD0D
44 7 resum2sqcl ABQ
45 19 27 44 syl2anc XPYPQ
46 45 3adant3 XPYPXYQ
47 1 3 10 9 rrx2pnedifcoorneorr XPYPXYB0A0
48 47 orcomd XPYPXYA0B0
49 7 resum2sqorgt0 ABA0B00<Q
50 20 28 48 49 syl3anc XPYPXY0<Q
51 50 gt0ne0d XPYPXYQ0
52 46 51 jca XPYPXYQQ0
53 52 adantr XPYPXYR+0<DQQ0
54 itsclc0lem1 ABCD0DQQ0AC+BDQ
55 21 29 35 43 53 54 syl311anc XPYPXYR+0<DAC+BDQ
56 itsclc0lem2 BACD0DQQ0BCADQ
57 29 21 35 43 53 56 syl311anc XPYPXYR+0<DBCADQ
58 55 57 jca XPYPXYR+0<DAC+BDQBCADQ
59 58 adantr XPYPXYR+0<DD0AC+BDQBCADQ
60 1 3 prelrrx2 AC+BDQBCADQ1AC+BDQ2BCADQP
61 59 60 syl XPYPXYR+0<DD01AC+BDQ2BCADQP
62 itsclc0lem2 ABCD0DQQ0ACBDQ
63 21 29 35 43 53 62 syl311anc XPYPXYR+0<DACBDQ
64 itsclc0lem1 BACD0DQQ0BC+ADQ
65 29 21 35 43 53 64 syl311anc XPYPXYR+0<DBC+ADQ
66 63 65 jca XPYPXYR+0<DACBDQBC+ADQ
67 66 adantr XPYPXYR+0<DD0ACBDQBC+ADQ
68 1 3 prelrrx2 ACBDQBC+ADQ1ACBDQ2BC+ADQP
69 67 68 syl XPYPXYR+0<DD01ACBDQ2BC+ADQP
70 simpl XPYPXYR+0<DXPYPXY
71 simprl XPYPXYR+0<DR+
72 0red XPYPXYR+0<D0
73 72 41 12 ltled XPYPXYR+0<D0D
74 70 71 73 jca32 XPYPXYR+0<DXPYPXYR+0D
75 74 adantr XPYPXYR+0<DD0XPYPXYR+0D
76 1 2 3 4 5 7 8 6 9 10 11 itsclinecirc0in XPYPXYR+0D0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
77 75 76 syl XPYPXYR+0<DD00˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
78 opex 1AC+BDQV
79 opex 2BCADQV
80 opex 1ACBDQV
81 opex 2BC+ADQV
82 80 81 pm3.2i 1ACBDQV2BC+ADQV
83 48 adantr XPYPXYR+0<DA0B0
84 83 adantr XPYPXYR+0<DD0A0B0
85 orcom A0B0B0A0
86 21 recnd XPYPXYR+0<DA
87 86 adantr XPYPXYR+0<DB0A
88 35 recnd XPYPXYR+0<DC
89 88 adantr XPYPXYR+0<DB0C
90 87 89 mulcld XPYPXYR+0<DB0AC
91 29 recnd XPYPXYR+0<DB
92 91 adantr XPYPXYR+0<DB0B
93 41 recnd XPYPXYR+0<DD
94 93 adantr XPYPXYR+0<DB0D
95 94 sqrtcld XPYPXYR+0<DB0D
96 92 95 mulcld XPYPXYR+0<DB0BD
97 90 96 addcld XPYPXYR+0<DB0AC+BD
98 90 96 subcld XPYPXYR+0<DB0ACBD
99 46 adantr XPYPXYR+0<DQ
100 99 recnd XPYPXYR+0<DQ
101 51 adantr XPYPXYR+0<DQ0
102 100 101 jca XPYPXYR+0<DQQ0
103 102 adantr XPYPXYR+0<DB0QQ0
104 div11 AC+BDACBDQQ0AC+BDQ=ACBDQAC+BD=ACBD
105 97 98 103 104 syl3anc XPYPXYR+0<DB0AC+BDQ=ACBDQAC+BD=ACBD
106 addsubeq0 ACBDAC+BD=ACBDBD=0
107 90 96 106 syl2anc XPYPXYR+0<DB0AC+BD=ACBDBD=0
108 41 73 resqrtcld XPYPXYR+0<DD
109 108 recnd XPYPXYR+0<DD
110 91 109 mul0ord XPYPXYR+0<DBD=0B=0D=0
111 110 adantr XPYPXYR+0<DB0BD=0B=0D=0
112 eqneqall B=0B0D=0
113 112 com12 B0B=0D=0
114 113 adantl XPYPXYR+0<DB0B=0D=0
115 sqrt00 D0DD=0D=0
116 41 73 115 syl2anc XPYPXYR+0<DD=0D=0
117 116 biimpd XPYPXYR+0<DD=0D=0
118 117 adantr XPYPXYR+0<DB0D=0D=0
119 114 118 jaod XPYPXYR+0<DB0B=0D=0D=0
120 111 119 sylbid XPYPXYR+0<DB0BD=0D=0
121 107 120 sylbid XPYPXYR+0<DB0AC+BD=ACBDD=0
122 105 121 sylbid XPYPXYR+0<DB0AC+BDQ=ACBDQD=0
123 122 necon3d XPYPXYR+0<DB0D0AC+BDQACBDQ
124 123 impancom XPYPXYR+0<DD0B0AC+BDQACBDQ
125 124 imp XPYPXYR+0<DD0B0AC+BDQACBDQ
126 125 olcd XPYPXYR+0<DD0B011AC+BDQACBDQ
127 1ex 1V
128 ovex AC+BDQV
129 127 128 opthne 1AC+BDQ1ACBDQ11AC+BDQACBDQ
130 126 129 sylibr XPYPXYR+0<DD0B01AC+BDQ1ACBDQ
131 1ne2 12
132 131 orci 12AC+BDQBC+ADQ
133 127 128 opthne 1AC+BDQ2BC+ADQ12AC+BDQBC+ADQ
134 132 133 mpbir 1AC+BDQ2BC+ADQ
135 130 134 jctir XPYPXYR+0<DD0B01AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ
136 135 ex XPYPXYR+0<DD0B01AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ
137 27 33 remulcld XPYPBC
138 137 3adant3 XPYPXYBC
139 138 adantr XPYPXYR+0<DBC
140 21 108 remulcld XPYPXYR+0<DAD
141 139 140 resubcld XPYPXYR+0<DBCAD
142 141 recnd XPYPXYR+0<DBCAD
143 142 adantr XPYPXYR+0<DA0BCAD
144 29 35 remulcld XPYPXYR+0<DBC
145 144 140 readdcld XPYPXYR+0<DBC+AD
146 145 adantr XPYPXYR+0<DA0BC+AD
147 146 recnd XPYPXYR+0<DA0BC+AD
148 102 adantr XPYPXYR+0<DA0QQ0
149 div11 BCADBC+ADQQ0BCADQ=BC+ADQBCAD=BC+AD
150 143 147 148 149 syl3anc XPYPXYR+0<DA0BCADQ=BC+ADQBCAD=BC+AD
151 139 recnd XPYPXYR+0<DBC
152 140 recnd XPYPXYR+0<DAD
153 151 152 jca XPYPXYR+0<DBCAD
154 153 adantr XPYPXYR+0<DA0BCAD
155 eqcom BCAD=BC+ADBC+AD=BCAD
156 addsubeq0 BCADBC+AD=BCADAD=0
157 155 156 bitrid BCADBCAD=BC+ADAD=0
158 154 157 syl XPYPXYR+0<DA0BCAD=BC+ADAD=0
159 86 109 mul0ord XPYPXYR+0<DAD=0A=0D=0
160 159 adantr XPYPXYR+0<DA0AD=0A=0D=0
161 eqneqall A=0A0D=0
162 161 com12 A0A=0D=0
163 162 adantl XPYPXYR+0<DA0A=0D=0
164 117 adantr XPYPXYR+0<DA0D=0D=0
165 163 164 jaod XPYPXYR+0<DA0A=0D=0D=0
166 160 165 sylbid XPYPXYR+0<DA0AD=0D=0
167 158 166 sylbid XPYPXYR+0<DA0BCAD=BC+ADD=0
168 150 167 sylbid XPYPXYR+0<DA0BCADQ=BC+ADQD=0
169 168 necon3d XPYPXYR+0<DA0D0BCADQBC+ADQ
170 169 impancom XPYPXYR+0<DD0A0BCADQBC+ADQ
171 170 imp XPYPXYR+0<DD0A0BCADQBC+ADQ
172 171 olcd XPYPXYR+0<DD0A022BCADQBC+ADQ
173 2ex 2V
174 ovex BCADQV
175 173 174 opthne 2BCADQ2BC+ADQ22BCADQBC+ADQ
176 172 175 sylibr XPYPXYR+0<DD0A02BCADQ2BC+ADQ
177 131 necomi 21
178 177 orci 21BCADQACBDQ
179 173 174 opthne 2BCADQ1ACBDQ21BCADQACBDQ
180 178 179 mpbir 2BCADQ1ACBDQ
181 176 180 jctil XPYPXYR+0<DD0A02BCADQ1ACBDQ2BCADQ2BC+ADQ
182 181 ex XPYPXYR+0<DD0A02BCADQ1ACBDQ2BCADQ2BC+ADQ
183 136 182 orim12d XPYPXYR+0<DD0B0A01AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ2BCADQ1ACBDQ2BCADQ2BC+ADQ
184 85 183 biimtrid XPYPXYR+0<DD0A0B01AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ2BCADQ1ACBDQ2BCADQ2BC+ADQ
185 84 184 mpd XPYPXYR+0<DD01AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ2BCADQ1ACBDQ2BCADQ2BC+ADQ
186 prneimg 1AC+BDQV2BCADQV1ACBDQV2BC+ADQV1AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ2BCADQ1ACBDQ2BCADQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
187 186 imp 1AC+BDQV2BCADQV1ACBDQV2BC+ADQV1AC+BDQ1ACBDQ1AC+BDQ2BC+ADQ2BCADQ1ACBDQ2BCADQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
188 78 79 82 185 187 mpsyl4anc XPYPXYR+0<DD01AC+BDQ2BCADQ1ACBDQ2BC+ADQ
189 77 188 jca XPYPXYR+0<DD00˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
190 61 69 189 3jca XPYPXYR+0<DD01AC+BDQ2BCADQP1ACBDQ2BC+ADQP0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
191 13 190 mpdan XPYPXYR+0<D1AC+BDQ2BCADQP1ACBDQ2BC+ADQP0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
192 preq1 a=1AC+BDQ2BCADQab=1AC+BDQ2BCADQb
193 192 eqeq2d a=1AC+BDQ2BCADQ0˙SRXLY=ab0˙SRXLY=1AC+BDQ2BCADQb
194 neeq1 a=1AC+BDQ2BCADQab1AC+BDQ2BCADQb
195 193 194 anbi12d a=1AC+BDQ2BCADQ0˙SRXLY=abab0˙SRXLY=1AC+BDQ2BCADQb1AC+BDQ2BCADQb
196 preq2 b=1ACBDQ2BC+ADQ1AC+BDQ2BCADQb=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
197 196 eqeq2d b=1ACBDQ2BC+ADQ0˙SRXLY=1AC+BDQ2BCADQb0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
198 neeq2 b=1ACBDQ2BC+ADQ1AC+BDQ2BCADQb1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
199 197 198 anbi12d b=1ACBDQ2BC+ADQ0˙SRXLY=1AC+BDQ2BCADQb1AC+BDQ2BCADQb0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQ
200 195 199 rspc2ev 1AC+BDQ2BCADQP1ACBDQ2BC+ADQP0˙SRXLY=1AC+BDQ2BCADQ1ACBDQ2BC+ADQ1AC+BDQ2BCADQ1ACBDQ2BC+ADQaPbP0˙SRXLY=abab
201 191 200 syl XPYPXYR+0<DaPbP0˙SRXLY=abab