Metamath Proof Explorer


Theorem irngnzply1lem

Description: In the case of a field E , a root X of some nonzero polynomial P with coefficients in a subfield F is integral over F . (Contributed by Thierry Arnoux, 5-Feb-2025)

Ref Expression
Hypotheses irngnzply1.o O=EevalSub1F
irngnzply1.z Z=0Poly1E
irngnzply1.1 0˙=0E
irngnzply1.e φEField
irngnzply1.f φFSubDRingE
irngnzply1lem.b B=BaseE
irngnzply1lem.1 φPdomO
irngnzply1lem.2 φPZ
irngnzply1lem.3 φOPX=0˙
irngnzply1lem.x φXB
Assertion irngnzply1lem φXEIntgRingF

Proof

Step Hyp Ref Expression
1 irngnzply1.o O=EevalSub1F
2 irngnzply1.z Z=0Poly1E
3 irngnzply1.1 0˙=0E
4 irngnzply1.e φEField
5 irngnzply1.f φFSubDRingE
6 irngnzply1lem.b B=BaseE
7 irngnzply1lem.1 φPdomO
8 irngnzply1lem.2 φPZ
9 irngnzply1lem.3 φOPX=0˙
10 irngnzply1lem.x φXB
11 issdrg FSubDRingEEDivRingFSubRingEE𝑠FDivRing
12 11 simp3bi FSubDRingEE𝑠FDivRing
13 5 12 syl φE𝑠FDivRing
14 13 drngringd φE𝑠FRing
15 4 fldcrngd φECRing
16 5 11 sylib φEDivRingFSubRingEE𝑠FDivRing
17 16 simp2d φFSubRingE
18 eqid E𝑠B=E𝑠B
19 eqid E𝑠F=E𝑠F
20 eqid Poly1E𝑠F=Poly1E𝑠F
21 1 6 18 19 20 evls1rhm ECRingFSubRingEOPoly1E𝑠FRingHomE𝑠B
22 15 17 21 syl2anc φOPoly1E𝑠FRingHomE𝑠B
23 eqid BasePoly1E𝑠F=BasePoly1E𝑠F
24 eqid BaseE𝑠B=BaseE𝑠B
25 23 24 rhmf OPoly1E𝑠FRingHomE𝑠BO:BasePoly1E𝑠FBaseE𝑠B
26 22 25 syl φO:BasePoly1E𝑠FBaseE𝑠B
27 26 fdmd φdomO=BasePoly1E𝑠F
28 7 27 eleqtrd φPBasePoly1E𝑠F
29 eqid Poly1E=Poly1E
30 29 19 20 23 17 2 ressply10g φZ=0Poly1E𝑠F
31 8 30 neeqtrd φP0Poly1E𝑠F
32 eqid 0Poly1E𝑠F=0Poly1E𝑠F
33 eqid Unic1pE𝑠F=Unic1pE𝑠F
34 20 23 32 33 drnguc1p E𝑠FDivRingPBasePoly1E𝑠FP0Poly1E𝑠FPUnic1pE𝑠F
35 13 28 31 34 syl3anc φPUnic1pE𝑠F
36 eqid Monic1pE𝑠F=Monic1pE𝑠F
37 eqid Poly1E𝑠F=Poly1E𝑠F
38 eqid algScPoly1E𝑠F=algScPoly1E𝑠F
39 eqid deg1E𝑠F=deg1E𝑠F
40 eqid invrE𝑠F=invrE𝑠F
41 33 36 20 37 38 39 40 uc1pmon1p E𝑠FRingPUnic1pE𝑠FalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPMonic1pE𝑠F
42 14 35 41 syl2anc φalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPMonic1pE𝑠F
43 simpr φp=algScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPp=algScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FP
44 43 fveq2d φp=algScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPOp=OalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FP
45 44 fveq1d φp=algScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPOpX=OalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPX
46 45 eqeq1d φp=algScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPOpX=0˙OalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPX=0˙
47 eqid E=E
48 eqid ScalarPoly1E𝑠F=ScalarPoly1E𝑠F
49 fldsdrgfld EFieldFSubDRingEE𝑠FField
50 4 5 49 syl2anc φE𝑠FField
51 50 fldcrngd φE𝑠FCRing
52 20 ply1assa E𝑠FCRingPoly1E𝑠FAssAlg
53 51 52 syl φPoly1E𝑠FAssAlg
54 assaring Poly1E𝑠FAssAlgPoly1E𝑠FRing
55 53 54 syl φPoly1E𝑠FRing
56 20 ply1lmod E𝑠FRingPoly1E𝑠FLMod
57 14 56 syl φPoly1E𝑠FLMod
58 eqid BaseScalarPoly1E𝑠F=BaseScalarPoly1E𝑠F
59 38 48 55 57 58 23 asclf φalgScPoly1E𝑠F:BaseScalarPoly1E𝑠FBasePoly1E𝑠F
60 eqid BaseE𝑠F=BaseE𝑠F
61 eqid 0E𝑠F=0E𝑠F
62 39 20 32 23 deg1nn0cl E𝑠FRingPBasePoly1E𝑠FP0Poly1E𝑠Fdeg1E𝑠FP0
63 14 28 31 62 syl3anc φdeg1E𝑠FP0
64 eqid coe1P=coe1P
65 64 23 20 60 coe1fvalcl PBasePoly1E𝑠Fdeg1E𝑠FP0coe1Pdeg1E𝑠FPBaseE𝑠F
66 28 63 65 syl2anc φcoe1Pdeg1E𝑠FPBaseE𝑠F
67 39 20 32 23 61 64 deg1ldg E𝑠FRingPBasePoly1E𝑠FP0Poly1E𝑠Fcoe1Pdeg1E𝑠FP0E𝑠F
68 14 28 31 67 syl3anc φcoe1Pdeg1E𝑠FP0E𝑠F
69 60 61 40 13 66 68 drnginvrcld φinvrE𝑠Fcoe1Pdeg1E𝑠FPBaseE𝑠F
70 20 ply1sca E𝑠FFieldE𝑠F=ScalarPoly1E𝑠F
71 50 70 syl φE𝑠F=ScalarPoly1E𝑠F
72 71 fveq2d φBaseE𝑠F=BaseScalarPoly1E𝑠F
73 69 72 eleqtrd φinvrE𝑠Fcoe1Pdeg1E𝑠FPBaseScalarPoly1E𝑠F
74 59 73 ffvelcdmd φalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPBasePoly1E𝑠F
75 1 6 20 19 23 37 47 15 17 74 28 10 evls1muld φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPX=OalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXEOPX
76 9 oveq2d φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXEOPX=OalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXE0˙
77 15 crngringd φERing
78 6 fvexi BV
79 78 a1i φBV
80 26 74 ffvelcdmd φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPBaseE𝑠B
81 18 6 24 4 79 80 pwselbas φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FP:BB
82 81 10 ffvelcdmd φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXB
83 6 47 3 ringrz ERingOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXBOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXE0˙=0˙
84 77 82 83 syl2anc φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPXE0˙=0˙
85 75 76 84 3eqtrd φOalgScPoly1E𝑠FinvrE𝑠Fcoe1Pdeg1E𝑠FPPoly1E𝑠FPX=0˙
86 42 46 85 rspcedvd φpMonic1pE𝑠FOpX=0˙
87 1 19 6 3 15 17 elirng φXEIntgRingFXBpMonic1pE𝑠FOpX=0˙
88 10 86 87 mpbir2and φXEIntgRingF