Metamath Proof Explorer


Theorem itg2i1fseq2

Description: In an extension to the results of itg2i1fseq , if there is an upper bound on the integrals of the simple functions approaching F , then S.2 F is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2i1fseq.1 φFMblFn
itg2i1fseq.2 φF:0+∞
itg2i1fseq.3 φP:dom1
itg2i1fseq.4 φn0𝑝fPnPnfPn+1
itg2i1fseq.5 φxnPnxFx
itg2i1fseq.6 S=m1Pm
itg2i1fseq2.7 φM
itg2i1fseq2.8 φk1PkM
Assertion itg2i1fseq2 φS2F

Proof

Step Hyp Ref Expression
1 itg2i1fseq.1 φFMblFn
2 itg2i1fseq.2 φF:0+∞
3 itg2i1fseq.3 φP:dom1
4 itg2i1fseq.4 φn0𝑝fPnPnfPn+1
5 itg2i1fseq.5 φxnPnxFx
6 itg2i1fseq.6 S=m1Pm
7 itg2i1fseq2.7 φM
8 itg2i1fseq2.8 φk1PkM
9 nnuz =1
10 1zzd φ1
11 3 ffvelcdmda φmPmdom1
12 itg1cl Pmdom11Pm
13 11 12 syl φm1Pm
14 13 6 fmptd φS:
15 3 ffvelcdmda φkPkdom1
16 peano2nn kk+1
17 ffvelcdm P:dom1k+1Pk+1dom1
18 3 16 17 syl2an φkPk+1dom1
19 simpr 0𝑝fPnPnfPn+1PnfPn+1
20 19 ralimi n0𝑝fPnPnfPn+1nPnfPn+1
21 4 20 syl φnPnfPn+1
22 fveq2 n=kPn=Pk
23 fvoveq1 n=kPn+1=Pk+1
24 22 23 breq12d n=kPnfPn+1PkfPk+1
25 24 rspccva nPnfPn+1kPkfPk+1
26 21 25 sylan φkPkfPk+1
27 itg1le Pkdom1Pk+1dom1PkfPk+11Pk1Pk+1
28 15 18 26 27 syl3anc φk1Pk1Pk+1
29 2fveq3 m=k1Pm=1Pk
30 fvex 1PkV
31 29 6 30 fvmpt kSk=1Pk
32 31 adantl φkSk=1Pk
33 2fveq3 m=k+11Pm=1Pk+1
34 fvex 1Pk+1V
35 33 6 34 fvmpt k+1Sk+1=1Pk+1
36 16 35 syl kSk+1=1Pk+1
37 36 adantl φkSk+1=1Pk+1
38 28 32 37 3brtr4d φkSkSk+1
39 32 8 eqbrtrd φkSkM
40 39 ralrimiva φkSkM
41 brralrspcev MkSkMzkSkz
42 7 40 41 syl2anc φzkSkz
43 9 10 14 38 42 climsup φSsupranS<
44 1 2 3 4 5 6 itg2i1fseq φ2F=supranS*<
45 14 frnd φranS
46 6 13 dmmptd φdomS=
47 1nn 1
48 ne0i 1
49 47 48 mp1i φ
50 46 49 eqnetrd φdomS
51 dm0rn0 domS=ranS=
52 51 necon3bii domSranS
53 50 52 sylib φranS
54 ffn S:SFn
55 breq1 y=SkyzSkz
56 55 ralrn SFnyranSyzkSkz
57 14 54 56 3syl φyranSyzkSkz
58 57 rexbidv φzyranSyzzkSkz
59 42 58 mpbird φzyranSyz
60 supxrre ranSranSzyranSyzsupranS*<=supranS<
61 45 53 59 60 syl3anc φsupranS*<=supranS<
62 44 61 eqtrd φ2F=supranS<
63 43 62 breqtrrd φS2F