Description: In an extension to the results of itg2i1fseq , if there is an upper bound on the integrals of the simple functions approaching F , then S.2 F is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itg2i1fseq.1 | |
|
itg2i1fseq.2 | |
||
itg2i1fseq.3 | |
||
itg2i1fseq.4 | |
||
itg2i1fseq.5 | |
||
itg2i1fseq.6 | |
||
itg2i1fseq2.7 | |
||
itg2i1fseq2.8 | |
||
Assertion | itg2i1fseq2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2i1fseq.1 | |
|
2 | itg2i1fseq.2 | |
|
3 | itg2i1fseq.3 | |
|
4 | itg2i1fseq.4 | |
|
5 | itg2i1fseq.5 | |
|
6 | itg2i1fseq.6 | |
|
7 | itg2i1fseq2.7 | |
|
8 | itg2i1fseq2.8 | |
|
9 | nnuz | |
|
10 | 1zzd | |
|
11 | 3 | ffvelcdmda | |
12 | itg1cl | |
|
13 | 11 12 | syl | |
14 | 13 6 | fmptd | |
15 | 3 | ffvelcdmda | |
16 | peano2nn | |
|
17 | ffvelcdm | |
|
18 | 3 16 17 | syl2an | |
19 | simpr | |
|
20 | 19 | ralimi | |
21 | 4 20 | syl | |
22 | fveq2 | |
|
23 | fvoveq1 | |
|
24 | 22 23 | breq12d | |
25 | 24 | rspccva | |
26 | 21 25 | sylan | |
27 | itg1le | |
|
28 | 15 18 26 27 | syl3anc | |
29 | 2fveq3 | |
|
30 | fvex | |
|
31 | 29 6 30 | fvmpt | |
32 | 31 | adantl | |
33 | 2fveq3 | |
|
34 | fvex | |
|
35 | 33 6 34 | fvmpt | |
36 | 16 35 | syl | |
37 | 36 | adantl | |
38 | 28 32 37 | 3brtr4d | |
39 | 32 8 | eqbrtrd | |
40 | 39 | ralrimiva | |
41 | brralrspcev | |
|
42 | 7 40 41 | syl2anc | |
43 | 9 10 14 38 42 | climsup | |
44 | 1 2 3 4 5 6 | itg2i1fseq | |
45 | 14 | frnd | |
46 | 6 13 | dmmptd | |
47 | 1nn | |
|
48 | ne0i | |
|
49 | 47 48 | mp1i | |
50 | 46 49 | eqnetrd | |
51 | dm0rn0 | |
|
52 | 51 | necon3bii | |
53 | 50 52 | sylib | |
54 | ffn | |
|
55 | breq1 | |
|
56 | 55 | ralrn | |
57 | 14 54 56 | 3syl | |
58 | 57 | rexbidv | |
59 | 42 58 | mpbird | |
60 | supxrre | |
|
61 | 45 53 59 60 | syl3anc | |
62 | 44 61 | eqtrd | |
63 | 43 62 | breqtrrd | |