Metamath Proof Explorer


Theorem itgsinexp

Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses itgsinexp.1 I = n 0 0 π sin x n dx
itgsinexp.2 φ N 2
Assertion itgsinexp φ I N = N 1 N I N 2

Proof

Step Hyp Ref Expression
1 itgsinexp.1 I = n 0 0 π sin x n dx
2 itgsinexp.2 φ N 2
3 eluzelz N 2 N
4 zcn N N
5 2 3 4 3syl φ N
6 1cnd φ 1
7 5 6 npcand φ N - 1 + 1 = N
8 7 eqcomd φ N = N - 1 + 1
9 8 oveq1d φ N I N = N - 1 + 1 I N
10 uz2m1nn N 2 N 1
11 2 10 syl φ N 1
12 11 nncnd φ N 1
13 1 a1i φ I = n 0 0 π sin x n dx
14 oveq2 n = N sin x n = sin x N
15 14 ad2antlr φ n = N x 0 π sin x n = sin x N
16 15 itgeq2dv φ n = N 0 π sin x n dx = 0 π sin x N dx
17 2cnd φ 2
18 npcan N 2 N - 2 + 2 = N
19 18 eqcomd N 2 N = N - 2 + 2
20 5 17 19 syl2anc φ N = N - 2 + 2
21 uznn0sub N 2 N 2 0
22 2 21 syl φ N 2 0
23 2nn0 2 0
24 23 a1i φ 2 0
25 22 24 nn0addcld φ N - 2 + 2 0
26 20 25 eqeltrd φ N 0
27 itgex 0 π sin x N dx V
28 27 a1i φ 0 π sin x N dx V
29 13 16 26 28 fvmptd φ I N = 0 π sin x N dx
30 ioosscn 0 π
31 30 sseli x 0 π x
32 31 sincld x 0 π sin x
33 32 adantl φ x 0 π sin x
34 26 adantr φ x 0 π N 0
35 33 34 expcld φ x 0 π sin x N
36 ioossicc 0 π 0 π
37 36 a1i φ 0 π 0 π
38 ioombl 0 π dom vol
39 38 a1i φ 0 π dom vol
40 0re 0
41 pire π
42 iccssre 0 π 0 π
43 40 41 42 mp2an 0 π
44 ax-resscn
45 43 44 sstri 0 π
46 45 sseli x 0 π x
47 46 sincld x 0 π sin x
48 47 adantl φ x 0 π sin x
49 26 adantr φ x 0 π N 0
50 48 49 expcld φ x 0 π sin x N
51 40 a1i φ 0
52 41 a1i φ π
53 46 adantl φ x 0 π x
54 eqid x sin x N = x sin x N
55 54 fvmpt2 x sin x N x sin x N x = sin x N
56 53 50 55 syl2anc φ x 0 π x sin x N x = sin x N
57 56 eqcomd φ x 0 π sin x N = x sin x N x
58 57 mpteq2dva φ x 0 π sin x N = x 0 π x sin x N x
59 nfmpt1 _ x x sin x N
60 nfcv _ x sin
61 sincn sin : cn
62 61 a1i φ sin : cn
63 60 62 26 expcnfg φ x sin x N : cn
64 45 a1i φ 0 π
65 59 63 64 cncfmptss φ x 0 π x sin x N x : 0 π cn
66 58 65 eqeltrd φ x 0 π sin x N : 0 π cn
67 cniccibl 0 π x 0 π sin x N : 0 π cn x 0 π sin x N 𝐿 1
68 51 52 66 67 syl3anc φ x 0 π sin x N 𝐿 1
69 37 39 50 68 iblss φ x 0 π sin x N 𝐿 1
70 35 69 itgcl φ 0 π sin x N dx
71 29 70 eqeltrd φ I N
72 12 71 adddirp1d φ N - 1 + 1 I N = N 1 I N + I N
73 eluz2b2 N 2 N 1 < N
74 2 73 sylib φ N 1 < N
75 74 simpld φ N
76 expm1t sin x N sin x N = sin x N 1 sin x
77 32 75 76 syl2anr φ x 0 π sin x N = sin x N 1 sin x
78 77 itgeq2dv φ 0 π sin x N dx = 0 π sin x N 1 sin x dx
79 eqid x sin x N 1 = x sin x N 1
80 eqid x cos x = x cos x
81 eqid x N 1 sin x N - 1 - 1 cos x = x N 1 sin x N - 1 - 1 cos x
82 eqid x sin x N 1 sin x = x sin x N 1 sin x
83 eqid x N 1 sin x N - 1 - 1 cos x cos x = x N 1 sin x N - 1 - 1 cos x cos x
84 eqid x cos x 2 sin x N - 1 - 1 = x cos x 2 sin x N - 1 - 1
85 79 80 81 82 83 84 11 itgsinexplem1 φ 0 π sin x N 1 sin x dx = N 1 0 π cos x 2 sin x N - 1 - 1 dx
86 5 6 6 subsub4d φ N - 1 - 1 = N 1 + 1
87 1p1e2 1 + 1 = 2
88 87 a1i φ 1 + 1 = 2
89 88 oveq2d φ N 1 + 1 = N 2
90 86 89 eqtrd φ N - 1 - 1 = N 2
91 90 adantr φ x 0 π N - 1 - 1 = N 2
92 91 oveq2d φ x 0 π sin x N - 1 - 1 = sin x N 2
93 92 oveq2d φ x 0 π cos x 2 sin x N - 1 - 1 = cos x 2 sin x N 2
94 93 itgeq2dv φ 0 π cos x 2 sin x N - 1 - 1 dx = 0 π cos x 2 sin x N 2 dx
95 94 oveq2d φ N 1 0 π cos x 2 sin x N - 1 - 1 dx = N 1 0 π cos x 2 sin x N 2 dx
96 sincossq x sin x 2 + cos x 2 = 1
97 1cnd x 1
98 sincl x sin x
99 98 sqcld x sin x 2
100 coscl x cos x
101 100 sqcld x cos x 2
102 97 99 101 subaddd x 1 sin x 2 = cos x 2 sin x 2 + cos x 2 = 1
103 96 102 mpbird x 1 sin x 2 = cos x 2
104 103 eqcomd x cos x 2 = 1 sin x 2
105 31 104 syl x 0 π cos x 2 = 1 sin x 2
106 105 oveq1d x 0 π cos x 2 sin x N 2 = 1 sin x 2 sin x N 2
107 106 adantl φ x 0 π cos x 2 sin x N 2 = 1 sin x 2 sin x N 2
108 107 itgeq2dv φ 0 π cos x 2 sin x N 2 dx = 0 π 1 sin x 2 sin x N 2 dx
109 1cnd φ x 0 π 1
110 32 sqcld x 0 π sin x 2
111 110 adantl φ x 0 π sin x 2
112 90 eqcomd φ N 2 = N - 1 - 1
113 nnm1nn0 N 1 N - 1 - 1 0
114 11 113 syl φ N - 1 - 1 0
115 112 114 eqeltrd φ N 2 0
116 115 adantr φ x 0 π N 2 0
117 33 116 expcld φ x 0 π sin x N 2
118 109 111 117 subdird φ x 0 π 1 sin x 2 sin x N 2 = 1 sin x N 2 sin x 2 sin x N 2
119 117 mulid2d φ x 0 π 1 sin x N 2 = sin x N 2
120 23 a1i φ x 0 π 2 0
121 33 116 120 expaddd φ x 0 π sin x 2 + N - 2 = sin x 2 sin x N 2
122 17 5 pncan3d φ 2 + N - 2 = N
123 122 oveq2d φ sin x 2 + N - 2 = sin x N
124 123 adantr φ x 0 π sin x 2 + N - 2 = sin x N
125 121 124 eqtr3d φ x 0 π sin x 2 sin x N 2 = sin x N
126 119 125 oveq12d φ x 0 π 1 sin x N 2 sin x 2 sin x N 2 = sin x N 2 sin x N
127 118 126 eqtrd φ x 0 π 1 sin x 2 sin x N 2 = sin x N 2 sin x N
128 127 itgeq2dv φ 0 π 1 sin x 2 sin x N 2 dx = 0 π sin x N 2 sin x N dx
129 115 adantr φ x 0 π N 2 0
130 48 129 expcld φ x 0 π sin x N 2
131 eqid x sin x N 2 = x sin x N 2
132 131 fvmpt2 x sin x N 2 x sin x N 2 x = sin x N 2
133 53 130 132 syl2anc φ x 0 π x sin x N 2 x = sin x N 2
134 133 eqcomd φ x 0 π sin x N 2 = x sin x N 2 x
135 134 mpteq2dva φ x 0 π sin x N 2 = x 0 π x sin x N 2 x
136 nfmpt1 _ x x sin x N 2
137 60 62 115 expcnfg φ x sin x N 2 : cn
138 136 137 64 cncfmptss φ x 0 π x sin x N 2 x : 0 π cn
139 135 138 eqeltrd φ x 0 π sin x N 2 : 0 π cn
140 cniccibl 0 π x 0 π sin x N 2 : 0 π cn x 0 π sin x N 2 𝐿 1
141 51 52 139 140 syl3anc φ x 0 π sin x N 2 𝐿 1
142 37 39 130 141 iblss φ x 0 π sin x N 2 𝐿 1
143 117 142 35 69 itgsub φ 0 π sin x N 2 sin x N dx = 0 π sin x N 2 dx 0 π sin x N dx
144 108 128 143 3eqtrd φ 0 π cos x 2 sin x N 2 dx = 0 π sin x N 2 dx 0 π sin x N dx
145 144 oveq2d φ N 1 0 π cos x 2 sin x N 2 dx = N 1 0 π sin x N 2 dx 0 π sin x N dx
146 85 95 145 3eqtrd φ 0 π sin x N 1 sin x dx = N 1 0 π sin x N 2 dx 0 π sin x N dx
147 29 78 146 3eqtrd φ I N = N 1 0 π sin x N 2 dx 0 π sin x N dx
148 oveq2 n = N 2 sin x n = sin x N 2
149 148 adantr n = N 2 x 0 π sin x n = sin x N 2
150 149 itgeq2dv n = N 2 0 π sin x n dx = 0 π sin x N 2 dx
151 itgex 0 π sin x N 2 dx V
152 151 a1i φ 0 π sin x N 2 dx V
153 1 150 115 152 fvmptd3 φ I N 2 = 0 π sin x N 2 dx
154 153 29 oveq12d φ I N 2 I N = 0 π sin x N 2 dx 0 π sin x N dx
155 154 oveq2d φ N 1 I N 2 I N = N 1 0 π sin x N 2 dx 0 π sin x N dx
156 117 142 itgcl φ 0 π sin x N 2 dx
157 153 156 eqeltrd φ I N 2
158 12 157 71 subdid φ N 1 I N 2 I N = N 1 I N 2 N 1 I N
159 147 155 158 3eqtr2d φ I N = N 1 I N 2 N 1 I N
160 159 eqcomd φ N 1 I N 2 N 1 I N = I N
161 12 157 mulcld φ N 1 I N 2
162 12 71 mulcld φ N 1 I N
163 161 162 71 subaddd φ N 1 I N 2 N 1 I N = I N N 1 I N + I N = N 1 I N 2
164 160 163 mpbid φ N 1 I N + I N = N 1 I N 2
165 9 72 164 3eqtrd φ N I N = N 1 I N 2
166 165 oveq1d φ N I N N = N 1 I N 2 N
167 75 nnne0d φ N 0
168 71 5 167 divcan3d φ N I N N = I N
169 12 157 5 167 div23d φ N 1 I N 2 N = N 1 N I N 2
170 166 168 169 3eqtr3d φ I N = N 1 N I N 2