Metamath Proof Explorer


Theorem itsclc0xyqsolr

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023) (Revised by AV, 14-May-2023)

Ref Expression
Hypotheses itsclc0xyqsolr.q Q = A 2 + B 2
itsclc0xyqsolr.d D = R 2 Q C 2
Assertion itsclc0xyqsolr A B C A 0 B 0 R + 0 D X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q X 2 + Y 2 = R 2 A X + B Y = C

Proof

Step Hyp Ref Expression
1 itsclc0xyqsolr.q Q = A 2 + B 2
2 itsclc0xyqsolr.d D = R 2 Q C 2
3 recn A A
4 3 3ad2ant1 A B C A
5 4 3ad2ant1 A B C A 0 B 0 R + 0 D A
6 recn C C
7 6 3ad2ant3 A B C C
8 7 3ad2ant1 A B C A 0 B 0 R + 0 D C
9 5 8 mulcld A B C A 0 B 0 R + 0 D A C
10 recn B B
11 10 3ad2ant2 A B C B
12 11 3ad2ant1 A B C A 0 B 0 R + 0 D B
13 rpre R + R
14 13 adantr R + 0 D R
15 14 anim2i A B C R + 0 D A B C R
16 15 3adant2 A B C A 0 B 0 R + 0 D A B C R
17 1 2 itsclc0lem3 A B C R D
18 16 17 syl A B C A 0 B 0 R + 0 D D
19 18 recnd A B C A 0 B 0 R + 0 D D
20 19 sqrtcld A B C A 0 B 0 R + 0 D D
21 12 20 mulcld A B C A 0 B 0 R + 0 D B D
22 9 21 addcld A B C A 0 B 0 R + 0 D A C + B D
23 1 resum2sqcl A B Q
24 23 3adant3 A B C Q
25 24 recnd A B C Q
26 25 3ad2ant1 A B C A 0 B 0 R + 0 D Q
27 simp11 A B C A 0 B 0 R + 0 D A
28 simp12 A B C A 0 B 0 R + 0 D B
29 simp2 A B C A 0 B 0 R + 0 D A 0 B 0
30 1 resum2sqorgt0 A B A 0 B 0 0 < Q
31 27 28 29 30 syl3anc A B C A 0 B 0 R + 0 D 0 < Q
32 31 gt0ne0d A B C A 0 B 0 R + 0 D Q 0
33 22 26 32 sqdivd A B C A 0 B 0 R + 0 D A C + B D Q 2 = A C + B D 2 Q 2
34 4 7 mulcld A B C A C
35 34 3ad2ant1 A B C A 0 B 0 R + 0 D A C
36 binom2 A C B D A C + B D 2 = A C 2 + 2 A C B D + B D 2
37 35 21 36 syl2anc A B C A 0 B 0 R + 0 D A C + B D 2 = A C 2 + 2 A C B D + B D 2
38 4 7 sqmuld A B C A C 2 = A 2 C 2
39 38 3ad2ant1 A B C A 0 B 0 R + 0 D A C 2 = A 2 C 2
40 39 oveq1d A B C A 0 B 0 R + 0 D A C 2 + 2 A C B D = A 2 C 2 + 2 A C B D
41 12 20 sqmuld A B C A 0 B 0 R + 0 D B D 2 = B 2 D 2
42 simp3r A B C A 0 B 0 R + 0 D 0 D
43 resqrtth D 0 D D 2 = D
44 18 42 43 syl2anc A B C A 0 B 0 R + 0 D D 2 = D
45 44 oveq2d A B C A 0 B 0 R + 0 D B 2 D 2 = B 2 D
46 41 45 eqtrd A B C A 0 B 0 R + 0 D B D 2 = B 2 D
47 40 46 oveq12d A B C A 0 B 0 R + 0 D A C 2 + 2 A C B D + B D 2 = A 2 C 2 + 2 A C B D + B 2 D
48 37 47 eqtrd A B C A 0 B 0 R + 0 D A C + B D 2 = A 2 C 2 + 2 A C B D + B 2 D
49 48 oveq1d A B C A 0 B 0 R + 0 D A C + B D 2 Q 2 = A 2 C 2 + 2 A C B D + B 2 D Q 2
50 33 49 eqtrd A B C A 0 B 0 R + 0 D A C + B D Q 2 = A 2 C 2 + 2 A C B D + B 2 D Q 2
51 12 8 mulcld A B C A 0 B 0 R + 0 D B C
52 5 20 mulcld A B C A 0 B 0 R + 0 D A D
53 51 52 subcld A B C A 0 B 0 R + 0 D B C A D
54 53 26 32 sqdivd A B C A 0 B 0 R + 0 D B C A D Q 2 = B C A D 2 Q 2
55 27 recnd A B C A 0 B 0 R + 0 D A
56 55 20 mulcld A B C A 0 B 0 R + 0 D A D
57 binom2sub B C A D B C A D 2 = B C 2 - 2 B C A D + A D 2
58 51 56 57 syl2anc A B C A 0 B 0 R + 0 D B C A D 2 = B C 2 - 2 B C A D + A D 2
59 11 7 sqmuld A B C B C 2 = B 2 C 2
60 59 3ad2ant1 A B C A 0 B 0 R + 0 D B C 2 = B 2 C 2
61 12 8 55 20 mul4d A B C A 0 B 0 R + 0 D B C A D = B A C D
62 12 55 mulcomd A B C A 0 B 0 R + 0 D B A = A B
63 62 oveq1d A B C A 0 B 0 R + 0 D B A C D = A B C D
64 55 12 8 20 mul4d A B C A 0 B 0 R + 0 D A B C D = A C B D
65 63 64 eqtrd A B C A 0 B 0 R + 0 D B A C D = A C B D
66 61 65 eqtrd A B C A 0 B 0 R + 0 D B C A D = A C B D
67 66 oveq2d A B C A 0 B 0 R + 0 D 2 B C A D = 2 A C B D
68 60 67 oveq12d A B C A 0 B 0 R + 0 D B C 2 2 B C A D = B 2 C 2 2 A C B D
69 55 20 sqmuld A B C A 0 B 0 R + 0 D A D 2 = A 2 D 2
70 44 oveq2d A B C A 0 B 0 R + 0 D A 2 D 2 = A 2 D
71 69 70 eqtrd A B C A 0 B 0 R + 0 D A D 2 = A 2 D
72 68 71 oveq12d A B C A 0 B 0 R + 0 D B C 2 - 2 B C A D + A D 2 = B 2 C 2 - 2 A C B D + A 2 D
73 58 72 eqtrd A B C A 0 B 0 R + 0 D B C A D 2 = B 2 C 2 - 2 A C B D + A 2 D
74 73 oveq1d A B C A 0 B 0 R + 0 D B C A D 2 Q 2 = B 2 C 2 - 2 A C B D + A 2 D Q 2
75 54 74 eqtrd A B C A 0 B 0 R + 0 D B C A D Q 2 = B 2 C 2 - 2 A C B D + A 2 D Q 2
76 50 75 oveq12d A B C A 0 B 0 R + 0 D A C + B D Q 2 + B C A D Q 2 = A 2 C 2 + 2 A C B D + B 2 D Q 2 + B 2 C 2 - 2 A C B D + A 2 D Q 2
77 5 sqcld A B C A 0 B 0 R + 0 D A 2
78 8 sqcld A B C A 0 B 0 R + 0 D C 2
79 77 78 mulcld A B C A 0 B 0 R + 0 D A 2 C 2
80 2cnd A B C A 0 B 0 R + 0 D 2
81 9 21 mulcld A B C A 0 B 0 R + 0 D A C B D
82 80 81 mulcld A B C A 0 B 0 R + 0 D 2 A C B D
83 79 82 addcld A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D
84 12 sqcld A B C A 0 B 0 R + 0 D B 2
85 84 19 mulcld A B C A 0 B 0 R + 0 D B 2 D
86 83 85 addcld A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D
87 84 78 mulcld A B C A 0 B 0 R + 0 D B 2 C 2
88 87 82 subcld A B C A 0 B 0 R + 0 D B 2 C 2 2 A C B D
89 77 19 mulcld A B C A 0 B 0 R + 0 D A 2 D
90 88 89 addcld A B C A 0 B 0 R + 0 D B 2 C 2 - 2 A C B D + A 2 D
91 26 sqcld A B C A 0 B 0 R + 0 D Q 2
92 2z 2
93 92 a1i A B C A 0 B 0 R + 0 D 2
94 26 32 93 expne0d A B C A 0 B 0 R + 0 D Q 2 0
95 86 90 91 94 divdird A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D + B 2 C 2 2 A C B D + A 2 D Q 2 = A 2 C 2 + 2 A C B D + B 2 D Q 2 + B 2 C 2 - 2 A C B D + A 2 D Q 2
96 83 85 88 89 add4d A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D + B 2 C 2 2 A C B D + A 2 D = A 2 C 2 + 2 A C B D + B 2 C 2 2 A C B D + B 2 D + A 2 D
97 79 82 87 ppncand A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 C 2 2 A C B D = A 2 C 2 + B 2 C 2
98 55 sqcld A B C A 0 B 0 R + 0 D A 2
99 98 84 78 adddird A B C A 0 B 0 R + 0 D A 2 + B 2 C 2 = A 2 C 2 + B 2 C 2
100 1 eqcomi A 2 + B 2 = Q
101 100 a1i A B C A 0 B 0 R + 0 D A 2 + B 2 = Q
102 101 oveq1d A B C A 0 B 0 R + 0 D A 2 + B 2 C 2 = Q C 2
103 97 99 102 3eqtr2d A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 C 2 2 A C B D = Q C 2
104 84 98 19 adddird A B C A 0 B 0 R + 0 D B 2 + A 2 D = B 2 D + A 2 D
105 84 98 addcomd A B C A 0 B 0 R + 0 D B 2 + A 2 = A 2 + B 2
106 105 101 eqtrd A B C A 0 B 0 R + 0 D B 2 + A 2 = Q
107 106 oveq1d A B C A 0 B 0 R + 0 D B 2 + A 2 D = Q D
108 104 107 eqtr3d A B C A 0 B 0 R + 0 D B 2 D + A 2 D = Q D
109 103 108 oveq12d A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 C 2 2 A C B D + B 2 D + A 2 D = Q C 2 + Q D
110 96 109 eqtrd A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D + B 2 C 2 2 A C B D + A 2 D = Q C 2 + Q D
111 110 oveq1d A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D + B 2 C 2 2 A C B D + A 2 D Q 2 = Q C 2 + Q D Q 2
112 26 78 19 adddid A B C A 0 B 0 R + 0 D Q C 2 + D = Q C 2 + Q D
113 112 eqcomd A B C A 0 B 0 R + 0 D Q C 2 + Q D = Q C 2 + D
114 26 sqvald A B C A 0 B 0 R + 0 D Q 2 = Q Q
115 113 114 oveq12d A B C A 0 B 0 R + 0 D Q C 2 + Q D Q 2 = Q C 2 + D Q Q
116 78 19 addcld A B C A 0 B 0 R + 0 D C 2 + D
117 116 26 26 32 32 divcan5d A B C A 0 B 0 R + 0 D Q C 2 + D Q Q = C 2 + D Q
118 115 117 eqtrd A B C A 0 B 0 R + 0 D Q C 2 + Q D Q 2 = C 2 + D Q
119 2 a1i A B C A 0 B 0 R + 0 D D = R 2 Q C 2
120 119 oveq2d A B C A 0 B 0 R + 0 D C 2 + D = C 2 + R 2 Q - C 2
121 rpcn R + R
122 121 adantr R + 0 D R
123 122 3ad2ant3 A B C A 0 B 0 R + 0 D R
124 123 sqcld A B C A 0 B 0 R + 0 D R 2
125 124 26 mulcld A B C A 0 B 0 R + 0 D R 2 Q
126 78 125 pncan3d A B C A 0 B 0 R + 0 D C 2 + R 2 Q - C 2 = R 2 Q
127 120 126 eqtrd A B C A 0 B 0 R + 0 D C 2 + D = R 2 Q
128 116 124 26 32 divmul3d A B C A 0 B 0 R + 0 D C 2 + D Q = R 2 C 2 + D = R 2 Q
129 127 128 mpbird A B C A 0 B 0 R + 0 D C 2 + D Q = R 2
130 118 129 eqtrd A B C A 0 B 0 R + 0 D Q C 2 + Q D Q 2 = R 2
131 111 130 eqtrd A B C A 0 B 0 R + 0 D A 2 C 2 + 2 A C B D + B 2 D + B 2 C 2 2 A C B D + A 2 D Q 2 = R 2
132 76 95 131 3eqtr2d A B C A 0 B 0 R + 0 D A C + B D Q 2 + B C A D Q 2 = R 2
133 5 22 26 32 divassd A B C A 0 B 0 R + 0 D A A C + B D Q = A A C + B D Q
134 5 9 21 adddid A B C A 0 B 0 R + 0 D A A C + B D = A A C + A B D
135 3 adantr A C A
136 6 adantl A C C
137 135 135 136 mulassd A C A A C = A A C
138 135 sqvald A C A 2 = A A
139 138 eqcomd A C A A = A 2
140 139 oveq1d A C A A C = A 2 C
141 137 140 eqtr3d A C A A C = A 2 C
142 141 3adant2 A B C A A C = A 2 C
143 142 3ad2ant1 A B C A 0 B 0 R + 0 D A A C = A 2 C
144 5 12 20 mulassd A B C A 0 B 0 R + 0 D A B D = A B D
145 144 eqcomd A B C A 0 B 0 R + 0 D A B D = A B D
146 143 145 oveq12d A B C A 0 B 0 R + 0 D A A C + A B D = A 2 C + A B D
147 134 146 eqtrd A B C A 0 B 0 R + 0 D A A C + B D = A 2 C + A B D
148 147 oveq1d A B C A 0 B 0 R + 0 D A A C + B D Q = A 2 C + A B D Q
149 133 148 eqtr3d A B C A 0 B 0 R + 0 D A A C + B D Q = A 2 C + A B D Q
150 12 53 26 32 divassd A B C A 0 B 0 R + 0 D B B C A D Q = B B C A D Q
151 12 51 52 subdid A B C A 0 B 0 R + 0 D B B C A D = B B C B A D
152 simpl B C B
153 152 recnd B C B
154 simpr B C C
155 154 recnd B C C
156 153 153 155 mulassd B C B B C = B B C
157 10 sqvald B B 2 = B B
158 157 eqcomd B B B = B 2
159 158 adantr B C B B = B 2
160 159 oveq1d B C B B C = B 2 C
161 156 160 eqtr3d B C B B C = B 2 C
162 161 3adant1 A B C B B C = B 2 C
163 162 3ad2ant1 A B C A 0 B 0 R + 0 D B B C = B 2 C
164 12 5 20 mulassd A B C A 0 B 0 R + 0 D B A D = B A D
165 11 4 mulcomd A B C B A = A B
166 165 3ad2ant1 A B C A 0 B 0 R + 0 D B A = A B
167 166 oveq1d A B C A 0 B 0 R + 0 D B A D = A B D
168 164 167 eqtr3d A B C A 0 B 0 R + 0 D B A D = A B D
169 163 168 oveq12d A B C A 0 B 0 R + 0 D B B C B A D = B 2 C A B D
170 151 169 eqtrd A B C A 0 B 0 R + 0 D B B C A D = B 2 C A B D
171 170 oveq1d A B C A 0 B 0 R + 0 D B B C A D Q = B 2 C A B D Q
172 150 171 eqtr3d A B C A 0 B 0 R + 0 D B B C A D Q = B 2 C A B D Q
173 149 172 oveq12d A B C A 0 B 0 R + 0 D A A C + B D Q + B B C A D Q = A 2 C + A B D Q + B 2 C A B D Q
174 77 8 mulcld A B C A 0 B 0 R + 0 D A 2 C
175 5 12 mulcld A B C A 0 B 0 R + 0 D A B
176 175 20 mulcld A B C A 0 B 0 R + 0 D A B D
177 174 176 addcld A B C A 0 B 0 R + 0 D A 2 C + A B D
178 84 8 mulcld A B C A 0 B 0 R + 0 D B 2 C
179 178 176 subcld A B C A 0 B 0 R + 0 D B 2 C A B D
180 177 179 26 32 divdird A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D Q = A 2 C + A B D Q + B 2 C A B D Q
181 174 176 178 ppncand A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D = A 2 C + B 2 C
182 77 84 8 adddird A B C A 0 B 0 R + 0 D A 2 + B 2 C = A 2 C + B 2 C
183 1 a1i A B C A 0 B 0 R + 0 D Q = A 2 + B 2
184 183 eqcomd A B C A 0 B 0 R + 0 D A 2 + B 2 = Q
185 184 oveq1d A B C A 0 B 0 R + 0 D A 2 + B 2 C = Q C
186 181 182 185 3eqtr2d A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D = Q C
187 177 179 addcld A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D
188 187 8 26 32 divmul2d A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D Q = C A 2 C + A B D + B 2 C A B D = Q C
189 186 188 mpbird A B C A 0 B 0 R + 0 D A 2 C + A B D + B 2 C A B D Q = C
190 173 180 189 3eqtr2d A B C A 0 B 0 R + 0 D A A C + B D Q + B B C A D Q = C
191 132 190 jca A B C A 0 B 0 R + 0 D A C + B D Q 2 + B C A D Q 2 = R 2 A A C + B D Q + B B C A D Q = C
192 oveq1 X = A C + B D Q X 2 = A C + B D Q 2
193 oveq1 Y = B C A D Q Y 2 = B C A D Q 2
194 192 193 oveqan12d X = A C + B D Q Y = B C A D Q X 2 + Y 2 = A C + B D Q 2 + B C A D Q 2
195 194 eqeq1d X = A C + B D Q Y = B C A D Q X 2 + Y 2 = R 2 A C + B D Q 2 + B C A D Q 2 = R 2
196 oveq2 X = A C + B D Q A X = A A C + B D Q
197 oveq2 Y = B C A D Q B Y = B B C A D Q
198 196 197 oveqan12d X = A C + B D Q Y = B C A D Q A X + B Y = A A C + B D Q + B B C A D Q
199 198 eqeq1d X = A C + B D Q Y = B C A D Q A X + B Y = C A A C + B D Q + B B C A D Q = C
200 195 199 anbi12d X = A C + B D Q Y = B C A D Q X 2 + Y 2 = R 2 A X + B Y = C A C + B D Q 2 + B C A D Q 2 = R 2 A A C + B D Q + B B C A D Q = C
201 191 200 syl5ibrcom A B C A 0 B 0 R + 0 D X = A C + B D Q Y = B C A D Q X 2 + Y 2 = R 2 A X + B Y = C
202 35 21 subcld A B C A 0 B 0 R + 0 D A C B D
203 202 26 32 sqdivd A B C A 0 B 0 R + 0 D A C B D Q 2 = A C B D 2 Q 2
204 binom2sub A C B D A C B D 2 = A C 2 - 2 A C B D + B D 2
205 35 21 204 syl2anc A B C A 0 B 0 R + 0 D A C B D 2 = A C 2 - 2 A C B D + B D 2
206 39 oveq1d A B C A 0 B 0 R + 0 D A C 2 2 A C B D = A 2 C 2 2 A C B D
207 206 46 oveq12d A B C A 0 B 0 R + 0 D A C 2 - 2 A C B D + B D 2 = A 2 C 2 - 2 A C B D + B 2 D
208 205 207 eqtrd A B C A 0 B 0 R + 0 D A C B D 2 = A 2 C 2 - 2 A C B D + B 2 D
209 208 oveq1d A B C A 0 B 0 R + 0 D A C B D 2 Q 2 = A 2 C 2 - 2 A C B D + B 2 D Q 2
210 203 209 eqtrd A B C A 0 B 0 R + 0 D A C B D Q 2 = A 2 C 2 - 2 A C B D + B 2 D Q 2
211 51 56 addcld A B C A 0 B 0 R + 0 D B C + A D
212 211 26 32 sqdivd A B C A 0 B 0 R + 0 D B C + A D Q 2 = B C + A D 2 Q 2
213 binom2 B C A D B C + A D 2 = B C 2 + 2 B C A D + A D 2
214 51 56 213 syl2anc A B C A 0 B 0 R + 0 D B C + A D 2 = B C 2 + 2 B C A D + A D 2
215 60 67 oveq12d A B C A 0 B 0 R + 0 D B C 2 + 2 B C A D = B 2 C 2 + 2 A C B D
216 215 71 oveq12d A B C A 0 B 0 R + 0 D B C 2 + 2 B C A D + A D 2 = B 2 C 2 + 2 A C B D + A 2 D
217 214 216 eqtrd A B C A 0 B 0 R + 0 D B C + A D 2 = B 2 C 2 + 2 A C B D + A 2 D
218 217 oveq1d A B C A 0 B 0 R + 0 D B C + A D 2 Q 2 = B 2 C 2 + 2 A C B D + A 2 D Q 2
219 212 218 eqtrd A B C A 0 B 0 R + 0 D B C + A D Q 2 = B 2 C 2 + 2 A C B D + A 2 D Q 2
220 210 219 oveq12d A B C A 0 B 0 R + 0 D A C B D Q 2 + B C + A D Q 2 = A 2 C 2 - 2 A C B D + B 2 D Q 2 + B 2 C 2 + 2 A C B D + A 2 D Q 2
221 98 78 mulcld A B C A 0 B 0 R + 0 D A 2 C 2
222 35 21 mulcld A B C A 0 B 0 R + 0 D A C B D
223 80 222 mulcld A B C A 0 B 0 R + 0 D 2 A C B D
224 221 223 subcld A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D
225 224 85 addcld A B C A 0 B 0 R + 0 D A 2 C 2 - 2 A C B D + B 2 D
226 87 223 addcld A B C A 0 B 0 R + 0 D B 2 C 2 + 2 A C B D
227 98 19 mulcld A B C A 0 B 0 R + 0 D A 2 D
228 226 227 addcld A B C A 0 B 0 R + 0 D B 2 C 2 + 2 A C B D + A 2 D
229 225 228 91 94 divdird A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 D + B 2 C 2 + 2 A C B D + A 2 D Q 2 = A 2 C 2 - 2 A C B D + B 2 D Q 2 + B 2 C 2 + 2 A C B D + A 2 D Q 2
230 224 85 226 227 add4d A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 D + B 2 C 2 + 2 A C B D + A 2 D = A 2 C 2 2 A C B D + B 2 C 2 + 2 A C B D + B 2 D + A 2 D
231 221 223 87 nppcan3d A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 C 2 + 2 A C B D = A 2 C 2 + B 2 C 2
232 231 99 102 3eqtr2d A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 C 2 + 2 A C B D = Q C 2
233 232 108 oveq12d A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 C 2 + 2 A C B D + B 2 D + A 2 D = Q C 2 + Q D
234 230 233 eqtrd A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 D + B 2 C 2 + 2 A C B D + A 2 D = Q C 2 + Q D
235 234 oveq1d A B C A 0 B 0 R + 0 D A 2 C 2 2 A C B D + B 2 D + B 2 C 2 + 2 A C B D + A 2 D Q 2 = Q C 2 + Q D Q 2
236 220 229 235 3eqtr2d A B C A 0 B 0 R + 0 D A C B D Q 2 + B C + A D Q 2 = Q C 2 + Q D Q 2
237 236 130 eqtrd A B C A 0 B 0 R + 0 D A C B D Q 2 + B C + A D Q 2 = R 2
238 simp1 A B C A
239 simp3 A B C C
240 238 239 remulcld A B C A C
241 240 recnd A B C A C
242 241 3ad2ant1 A B C A 0 B 0 R + 0 D A C
243 242 21 subcld A B C A 0 B 0 R + 0 D A C B D
244 5 243 26 32 divassd A B C A 0 B 0 R + 0 D A A C B D Q = A A C B D Q
245 5 242 21 subdid A B C A 0 B 0 R + 0 D A A C B D = A A C A B D
246 143 145 oveq12d A B C A 0 B 0 R + 0 D A A C A B D = A 2 C A B D
247 245 246 eqtrd A B C A 0 B 0 R + 0 D A A C B D = A 2 C A B D
248 247 oveq1d A B C A 0 B 0 R + 0 D A A C B D Q = A 2 C A B D Q
249 244 248 eqtr3d A B C A 0 B 0 R + 0 D A A C B D Q = A 2 C A B D Q
250 51 52 addcld A B C A 0 B 0 R + 0 D B C + A D
251 12 250 26 32 divassd A B C A 0 B 0 R + 0 D B B C + A D Q = B B C + A D Q
252 12 51 52 adddid A B C A 0 B 0 R + 0 D B B C + A D = B B C + B A D
253 163 168 oveq12d A B C A 0 B 0 R + 0 D B B C + B A D = B 2 C + A B D
254 252 253 eqtrd A B C A 0 B 0 R + 0 D B B C + A D = B 2 C + A B D
255 254 oveq1d A B C A 0 B 0 R + 0 D B B C + A D Q = B 2 C + A B D Q
256 251 255 eqtr3d A B C A 0 B 0 R + 0 D B B C + A D Q = B 2 C + A B D Q
257 249 256 oveq12d A B C A 0 B 0 R + 0 D A A C B D Q + B B C + A D Q = A 2 C A B D Q + B 2 C + A B D Q
258 174 176 subcld A B C A 0 B 0 R + 0 D A 2 C A B D
259 178 176 addcld A B C A 0 B 0 R + 0 D B 2 C + A B D
260 258 259 26 32 divdird A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D Q = A 2 C A B D Q + B 2 C + A B D Q
261 174 176 178 nppcan3d A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D = A 2 C + B 2 C
262 261 182 185 3eqtr2d A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D = Q C
263 258 259 addcld A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D
264 263 8 26 32 divmul2d A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D Q = C A 2 C A B D + B 2 C + A B D = Q C
265 262 264 mpbird A B C A 0 B 0 R + 0 D A 2 C A B D + B 2 C + A B D Q = C
266 257 260 265 3eqtr2d A B C A 0 B 0 R + 0 D A A C B D Q + B B C + A D Q = C
267 237 266 jca A B C A 0 B 0 R + 0 D A C B D Q 2 + B C + A D Q 2 = R 2 A A C B D Q + B B C + A D Q = C
268 oveq1 X = A C B D Q X 2 = A C B D Q 2
269 oveq1 Y = B C + A D Q Y 2 = B C + A D Q 2
270 268 269 oveqan12d X = A C B D Q Y = B C + A D Q X 2 + Y 2 = A C B D Q 2 + B C + A D Q 2
271 270 eqeq1d X = A C B D Q Y = B C + A D Q X 2 + Y 2 = R 2 A C B D Q 2 + B C + A D Q 2 = R 2
272 oveq2 X = A C B D Q A X = A A C B D Q
273 oveq2 Y = B C + A D Q B Y = B B C + A D Q
274 272 273 oveqan12d X = A C B D Q Y = B C + A D Q A X + B Y = A A C B D Q + B B C + A D Q
275 274 eqeq1d X = A C B D Q Y = B C + A D Q A X + B Y = C A A C B D Q + B B C + A D Q = C
276 271 275 anbi12d X = A C B D Q Y = B C + A D Q X 2 + Y 2 = R 2 A X + B Y = C A C B D Q 2 + B C + A D Q 2 = R 2 A A C B D Q + B B C + A D Q = C
277 267 276 syl5ibrcom A B C A 0 B 0 R + 0 D X = A C B D Q Y = B C + A D Q X 2 + Y 2 = R 2 A X + B Y = C
278 201 277 jaod A B C A 0 B 0 R + 0 D X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q X 2 + Y 2 = R 2 A X + B Y = C