Metamath Proof Explorer


Theorem itsclc0xyqsolr

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023) (Revised by AV, 14-May-2023)

Ref Expression
Hypotheses itsclc0xyqsolr.q Q=A2+B2
itsclc0xyqsolr.d D=R2QC2
Assertion itsclc0xyqsolr ABCA0B0R+0DX=AC+BDQY=BCADQX=ACBDQY=BC+ADQX2+Y2=R2AX+BY=C

Proof

Step Hyp Ref Expression
1 itsclc0xyqsolr.q Q=A2+B2
2 itsclc0xyqsolr.d D=R2QC2
3 recn AA
4 3 3ad2ant1 ABCA
5 4 3ad2ant1 ABCA0B0R+0DA
6 recn CC
7 6 3ad2ant3 ABCC
8 7 3ad2ant1 ABCA0B0R+0DC
9 5 8 mulcld ABCA0B0R+0DAC
10 recn BB
11 10 3ad2ant2 ABCB
12 11 3ad2ant1 ABCA0B0R+0DB
13 rpre R+R
14 13 adantr R+0DR
15 14 anim2i ABCR+0DABCR
16 15 3adant2 ABCA0B0R+0DABCR
17 1 2 itsclc0lem3 ABCRD
18 16 17 syl ABCA0B0R+0DD
19 18 recnd ABCA0B0R+0DD
20 19 sqrtcld ABCA0B0R+0DD
21 12 20 mulcld ABCA0B0R+0DBD
22 9 21 addcld ABCA0B0R+0DAC+BD
23 1 resum2sqcl ABQ
24 23 3adant3 ABCQ
25 24 recnd ABCQ
26 25 3ad2ant1 ABCA0B0R+0DQ
27 simp11 ABCA0B0R+0DA
28 simp12 ABCA0B0R+0DB
29 simp2 ABCA0B0R+0DA0B0
30 1 resum2sqorgt0 ABA0B00<Q
31 27 28 29 30 syl3anc ABCA0B0R+0D0<Q
32 31 gt0ne0d ABCA0B0R+0DQ0
33 22 26 32 sqdivd ABCA0B0R+0DAC+BDQ2=AC+BD2Q2
34 4 7 mulcld ABCAC
35 34 3ad2ant1 ABCA0B0R+0DAC
36 binom2 ACBDAC+BD2=AC2+2ACBD+BD2
37 35 21 36 syl2anc ABCA0B0R+0DAC+BD2=AC2+2ACBD+BD2
38 4 7 sqmuld ABCAC2=A2C2
39 38 3ad2ant1 ABCA0B0R+0DAC2=A2C2
40 39 oveq1d ABCA0B0R+0DAC2+2ACBD=A2C2+2ACBD
41 12 20 sqmuld ABCA0B0R+0DBD2=B2D2
42 simp3r ABCA0B0R+0D0D
43 resqrtth D0DD2=D
44 18 42 43 syl2anc ABCA0B0R+0DD2=D
45 44 oveq2d ABCA0B0R+0DB2D2=B2D
46 41 45 eqtrd ABCA0B0R+0DBD2=B2D
47 40 46 oveq12d ABCA0B0R+0DAC2+2ACBD+BD2=A2C2+2ACBD+B2D
48 37 47 eqtrd ABCA0B0R+0DAC+BD2=A2C2+2ACBD+B2D
49 48 oveq1d ABCA0B0R+0DAC+BD2Q2=A2C2+2ACBD+B2DQ2
50 33 49 eqtrd ABCA0B0R+0DAC+BDQ2=A2C2+2ACBD+B2DQ2
51 12 8 mulcld ABCA0B0R+0DBC
52 5 20 mulcld ABCA0B0R+0DAD
53 51 52 subcld ABCA0B0R+0DBCAD
54 53 26 32 sqdivd ABCA0B0R+0DBCADQ2=BCAD2Q2
55 27 recnd ABCA0B0R+0DA
56 55 20 mulcld ABCA0B0R+0DAD
57 binom2sub BCADBCAD2=BC2-2BCAD+AD2
58 51 56 57 syl2anc ABCA0B0R+0DBCAD2=BC2-2BCAD+AD2
59 11 7 sqmuld ABCBC2=B2C2
60 59 3ad2ant1 ABCA0B0R+0DBC2=B2C2
61 12 8 55 20 mul4d ABCA0B0R+0DBCAD=BACD
62 12 55 mulcomd ABCA0B0R+0DBA=AB
63 62 oveq1d ABCA0B0R+0DBACD=ABCD
64 55 12 8 20 mul4d ABCA0B0R+0DABCD=ACBD
65 63 64 eqtrd ABCA0B0R+0DBACD=ACBD
66 61 65 eqtrd ABCA0B0R+0DBCAD=ACBD
67 66 oveq2d ABCA0B0R+0D2BCAD=2ACBD
68 60 67 oveq12d ABCA0B0R+0DBC22BCAD=B2C22ACBD
69 55 20 sqmuld ABCA0B0R+0DAD2=A2D2
70 44 oveq2d ABCA0B0R+0DA2D2=A2D
71 69 70 eqtrd ABCA0B0R+0DAD2=A2D
72 68 71 oveq12d ABCA0B0R+0DBC2-2BCAD+AD2=B2C2-2ACBD+A2D
73 58 72 eqtrd ABCA0B0R+0DBCAD2=B2C2-2ACBD+A2D
74 73 oveq1d ABCA0B0R+0DBCAD2Q2=B2C2-2ACBD+A2DQ2
75 54 74 eqtrd ABCA0B0R+0DBCADQ2=B2C2-2ACBD+A2DQ2
76 50 75 oveq12d ABCA0B0R+0DAC+BDQ2+BCADQ2=A2C2+2ACBD+B2DQ2+B2C2-2ACBD+A2DQ2
77 5 sqcld ABCA0B0R+0DA2
78 8 sqcld ABCA0B0R+0DC2
79 77 78 mulcld ABCA0B0R+0DA2C2
80 2cnd ABCA0B0R+0D2
81 9 21 mulcld ABCA0B0R+0DACBD
82 80 81 mulcld ABCA0B0R+0D2ACBD
83 79 82 addcld ABCA0B0R+0DA2C2+2ACBD
84 12 sqcld ABCA0B0R+0DB2
85 84 19 mulcld ABCA0B0R+0DB2D
86 83 85 addcld ABCA0B0R+0DA2C2+2ACBD+B2D
87 84 78 mulcld ABCA0B0R+0DB2C2
88 87 82 subcld ABCA0B0R+0DB2C22ACBD
89 77 19 mulcld ABCA0B0R+0DA2D
90 88 89 addcld ABCA0B0R+0DB2C2-2ACBD+A2D
91 26 sqcld ABCA0B0R+0DQ2
92 2z 2
93 92 a1i ABCA0B0R+0D2
94 26 32 93 expne0d ABCA0B0R+0DQ20
95 86 90 91 94 divdird ABCA0B0R+0DA2C2+2ACBD+B2D+B2C22ACBD+A2DQ2=A2C2+2ACBD+B2DQ2+B2C2-2ACBD+A2DQ2
96 83 85 88 89 add4d ABCA0B0R+0DA2C2+2ACBD+B2D+B2C22ACBD+A2D=A2C2+2ACBD+B2C22ACBD+B2D+A2D
97 79 82 87 ppncand ABCA0B0R+0DA2C2+2ACBD+B2C22ACBD=A2C2+B2C2
98 55 sqcld ABCA0B0R+0DA2
99 98 84 78 adddird ABCA0B0R+0DA2+B2C2=A2C2+B2C2
100 1 eqcomi A2+B2=Q
101 100 a1i ABCA0B0R+0DA2+B2=Q
102 101 oveq1d ABCA0B0R+0DA2+B2C2=QC2
103 97 99 102 3eqtr2d ABCA0B0R+0DA2C2+2ACBD+B2C22ACBD=QC2
104 84 98 19 adddird ABCA0B0R+0DB2+A2D=B2D+A2D
105 84 98 addcomd ABCA0B0R+0DB2+A2=A2+B2
106 105 101 eqtrd ABCA0B0R+0DB2+A2=Q
107 106 oveq1d ABCA0B0R+0DB2+A2D=QD
108 104 107 eqtr3d ABCA0B0R+0DB2D+A2D=QD
109 103 108 oveq12d ABCA0B0R+0DA2C2+2ACBD+B2C22ACBD+B2D+A2D=QC2+QD
110 96 109 eqtrd ABCA0B0R+0DA2C2+2ACBD+B2D+B2C22ACBD+A2D=QC2+QD
111 110 oveq1d ABCA0B0R+0DA2C2+2ACBD+B2D+B2C22ACBD+A2DQ2=QC2+QDQ2
112 26 78 19 adddid ABCA0B0R+0DQC2+D=QC2+QD
113 112 eqcomd ABCA0B0R+0DQC2+QD=QC2+D
114 26 sqvald ABCA0B0R+0DQ2=QQ
115 113 114 oveq12d ABCA0B0R+0DQC2+QDQ2=QC2+DQQ
116 78 19 addcld ABCA0B0R+0DC2+D
117 116 26 26 32 32 divcan5d ABCA0B0R+0DQC2+DQQ=C2+DQ
118 115 117 eqtrd ABCA0B0R+0DQC2+QDQ2=C2+DQ
119 2 a1i ABCA0B0R+0DD=R2QC2
120 119 oveq2d ABCA0B0R+0DC2+D=C2+R2Q-C2
121 rpcn R+R
122 121 adantr R+0DR
123 122 3ad2ant3 ABCA0B0R+0DR
124 123 sqcld ABCA0B0R+0DR2
125 124 26 mulcld ABCA0B0R+0DR2Q
126 78 125 pncan3d ABCA0B0R+0DC2+R2Q-C2=R2Q
127 120 126 eqtrd ABCA0B0R+0DC2+D=R2Q
128 116 124 26 32 divmul3d ABCA0B0R+0DC2+DQ=R2C2+D=R2Q
129 127 128 mpbird ABCA0B0R+0DC2+DQ=R2
130 118 129 eqtrd ABCA0B0R+0DQC2+QDQ2=R2
131 111 130 eqtrd ABCA0B0R+0DA2C2+2ACBD+B2D+B2C22ACBD+A2DQ2=R2
132 76 95 131 3eqtr2d ABCA0B0R+0DAC+BDQ2+BCADQ2=R2
133 5 22 26 32 divassd ABCA0B0R+0DAAC+BDQ=AAC+BDQ
134 5 9 21 adddid ABCA0B0R+0DAAC+BD=AAC+ABD
135 3 adantr ACA
136 6 adantl ACC
137 135 135 136 mulassd ACAAC=AAC
138 135 sqvald ACA2=AA
139 138 eqcomd ACAA=A2
140 139 oveq1d ACAAC=A2C
141 137 140 eqtr3d ACAAC=A2C
142 141 3adant2 ABCAAC=A2C
143 142 3ad2ant1 ABCA0B0R+0DAAC=A2C
144 5 12 20 mulassd ABCA0B0R+0DABD=ABD
145 144 eqcomd ABCA0B0R+0DABD=ABD
146 143 145 oveq12d ABCA0B0R+0DAAC+ABD=A2C+ABD
147 134 146 eqtrd ABCA0B0R+0DAAC+BD=A2C+ABD
148 147 oveq1d ABCA0B0R+0DAAC+BDQ=A2C+ABDQ
149 133 148 eqtr3d ABCA0B0R+0DAAC+BDQ=A2C+ABDQ
150 12 53 26 32 divassd ABCA0B0R+0DBBCADQ=BBCADQ
151 12 51 52 subdid ABCA0B0R+0DBBCAD=BBCBAD
152 simpl BCB
153 152 recnd BCB
154 simpr BCC
155 154 recnd BCC
156 153 153 155 mulassd BCBBC=BBC
157 10 sqvald BB2=BB
158 157 eqcomd BBB=B2
159 158 adantr BCBB=B2
160 159 oveq1d BCBBC=B2C
161 156 160 eqtr3d BCBBC=B2C
162 161 3adant1 ABCBBC=B2C
163 162 3ad2ant1 ABCA0B0R+0DBBC=B2C
164 12 5 20 mulassd ABCA0B0R+0DBAD=BAD
165 11 4 mulcomd ABCBA=AB
166 165 3ad2ant1 ABCA0B0R+0DBA=AB
167 166 oveq1d ABCA0B0R+0DBAD=ABD
168 164 167 eqtr3d ABCA0B0R+0DBAD=ABD
169 163 168 oveq12d ABCA0B0R+0DBBCBAD=B2CABD
170 151 169 eqtrd ABCA0B0R+0DBBCAD=B2CABD
171 170 oveq1d ABCA0B0R+0DBBCADQ=B2CABDQ
172 150 171 eqtr3d ABCA0B0R+0DBBCADQ=B2CABDQ
173 149 172 oveq12d ABCA0B0R+0DAAC+BDQ+BBCADQ=A2C+ABDQ+B2CABDQ
174 77 8 mulcld ABCA0B0R+0DA2C
175 5 12 mulcld ABCA0B0R+0DAB
176 175 20 mulcld ABCA0B0R+0DABD
177 174 176 addcld ABCA0B0R+0DA2C+ABD
178 84 8 mulcld ABCA0B0R+0DB2C
179 178 176 subcld ABCA0B0R+0DB2CABD
180 177 179 26 32 divdird ABCA0B0R+0DA2C+ABD+B2CABDQ=A2C+ABDQ+B2CABDQ
181 174 176 178 ppncand ABCA0B0R+0DA2C+ABD+B2CABD=A2C+B2C
182 77 84 8 adddird ABCA0B0R+0DA2+B2C=A2C+B2C
183 1 a1i ABCA0B0R+0DQ=A2+B2
184 183 eqcomd ABCA0B0R+0DA2+B2=Q
185 184 oveq1d ABCA0B0R+0DA2+B2C=QC
186 181 182 185 3eqtr2d ABCA0B0R+0DA2C+ABD+B2CABD=QC
187 177 179 addcld ABCA0B0R+0DA2C+ABD+B2CABD
188 187 8 26 32 divmul2d ABCA0B0R+0DA2C+ABD+B2CABDQ=CA2C+ABD+B2CABD=QC
189 186 188 mpbird ABCA0B0R+0DA2C+ABD+B2CABDQ=C
190 173 180 189 3eqtr2d ABCA0B0R+0DAAC+BDQ+BBCADQ=C
191 132 190 jca ABCA0B0R+0DAC+BDQ2+BCADQ2=R2AAC+BDQ+BBCADQ=C
192 oveq1 X=AC+BDQX2=AC+BDQ2
193 oveq1 Y=BCADQY2=BCADQ2
194 192 193 oveqan12d X=AC+BDQY=BCADQX2+Y2=AC+BDQ2+BCADQ2
195 194 eqeq1d X=AC+BDQY=BCADQX2+Y2=R2AC+BDQ2+BCADQ2=R2
196 oveq2 X=AC+BDQAX=AAC+BDQ
197 oveq2 Y=BCADQBY=BBCADQ
198 196 197 oveqan12d X=AC+BDQY=BCADQAX+BY=AAC+BDQ+BBCADQ
199 198 eqeq1d X=AC+BDQY=BCADQAX+BY=CAAC+BDQ+BBCADQ=C
200 195 199 anbi12d X=AC+BDQY=BCADQX2+Y2=R2AX+BY=CAC+BDQ2+BCADQ2=R2AAC+BDQ+BBCADQ=C
201 191 200 syl5ibrcom ABCA0B0R+0DX=AC+BDQY=BCADQX2+Y2=R2AX+BY=C
202 35 21 subcld ABCA0B0R+0DACBD
203 202 26 32 sqdivd ABCA0B0R+0DACBDQ2=ACBD2Q2
204 binom2sub ACBDACBD2=AC2-2ACBD+BD2
205 35 21 204 syl2anc ABCA0B0R+0DACBD2=AC2-2ACBD+BD2
206 39 oveq1d ABCA0B0R+0DAC22ACBD=A2C22ACBD
207 206 46 oveq12d ABCA0B0R+0DAC2-2ACBD+BD2=A2C2-2ACBD+B2D
208 205 207 eqtrd ABCA0B0R+0DACBD2=A2C2-2ACBD+B2D
209 208 oveq1d ABCA0B0R+0DACBD2Q2=A2C2-2ACBD+B2DQ2
210 203 209 eqtrd ABCA0B0R+0DACBDQ2=A2C2-2ACBD+B2DQ2
211 51 56 addcld ABCA0B0R+0DBC+AD
212 211 26 32 sqdivd ABCA0B0R+0DBC+ADQ2=BC+AD2Q2
213 binom2 BCADBC+AD2=BC2+2BCAD+AD2
214 51 56 213 syl2anc ABCA0B0R+0DBC+AD2=BC2+2BCAD+AD2
215 60 67 oveq12d ABCA0B0R+0DBC2+2BCAD=B2C2+2ACBD
216 215 71 oveq12d ABCA0B0R+0DBC2+2BCAD+AD2=B2C2+2ACBD+A2D
217 214 216 eqtrd ABCA0B0R+0DBC+AD2=B2C2+2ACBD+A2D
218 217 oveq1d ABCA0B0R+0DBC+AD2Q2=B2C2+2ACBD+A2DQ2
219 212 218 eqtrd ABCA0B0R+0DBC+ADQ2=B2C2+2ACBD+A2DQ2
220 210 219 oveq12d ABCA0B0R+0DACBDQ2+BC+ADQ2=A2C2-2ACBD+B2DQ2+B2C2+2ACBD+A2DQ2
221 98 78 mulcld ABCA0B0R+0DA2C2
222 35 21 mulcld ABCA0B0R+0DACBD
223 80 222 mulcld ABCA0B0R+0D2ACBD
224 221 223 subcld ABCA0B0R+0DA2C22ACBD
225 224 85 addcld ABCA0B0R+0DA2C2-2ACBD+B2D
226 87 223 addcld ABCA0B0R+0DB2C2+2ACBD
227 98 19 mulcld ABCA0B0R+0DA2D
228 226 227 addcld ABCA0B0R+0DB2C2+2ACBD+A2D
229 225 228 91 94 divdird ABCA0B0R+0DA2C22ACBD+B2D+B2C2+2ACBD+A2DQ2=A2C2-2ACBD+B2DQ2+B2C2+2ACBD+A2DQ2
230 224 85 226 227 add4d ABCA0B0R+0DA2C22ACBD+B2D+B2C2+2ACBD+A2D=A2C22ACBD+B2C2+2ACBD+B2D+A2D
231 221 223 87 nppcan3d ABCA0B0R+0DA2C22ACBD+B2C2+2ACBD=A2C2+B2C2
232 231 99 102 3eqtr2d ABCA0B0R+0DA2C22ACBD+B2C2+2ACBD=QC2
233 232 108 oveq12d ABCA0B0R+0DA2C22ACBD+B2C2+2ACBD+B2D+A2D=QC2+QD
234 230 233 eqtrd ABCA0B0R+0DA2C22ACBD+B2D+B2C2+2ACBD+A2D=QC2+QD
235 234 oveq1d ABCA0B0R+0DA2C22ACBD+B2D+B2C2+2ACBD+A2DQ2=QC2+QDQ2
236 220 229 235 3eqtr2d ABCA0B0R+0DACBDQ2+BC+ADQ2=QC2+QDQ2
237 236 130 eqtrd ABCA0B0R+0DACBDQ2+BC+ADQ2=R2
238 simp1 ABCA
239 simp3 ABCC
240 238 239 remulcld ABCAC
241 240 recnd ABCAC
242 241 3ad2ant1 ABCA0B0R+0DAC
243 242 21 subcld ABCA0B0R+0DACBD
244 5 243 26 32 divassd ABCA0B0R+0DAACBDQ=AACBDQ
245 5 242 21 subdid ABCA0B0R+0DAACBD=AACABD
246 143 145 oveq12d ABCA0B0R+0DAACABD=A2CABD
247 245 246 eqtrd ABCA0B0R+0DAACBD=A2CABD
248 247 oveq1d ABCA0B0R+0DAACBDQ=A2CABDQ
249 244 248 eqtr3d ABCA0B0R+0DAACBDQ=A2CABDQ
250 51 52 addcld ABCA0B0R+0DBC+AD
251 12 250 26 32 divassd ABCA0B0R+0DBBC+ADQ=BBC+ADQ
252 12 51 52 adddid ABCA0B0R+0DBBC+AD=BBC+BAD
253 163 168 oveq12d ABCA0B0R+0DBBC+BAD=B2C+ABD
254 252 253 eqtrd ABCA0B0R+0DBBC+AD=B2C+ABD
255 254 oveq1d ABCA0B0R+0DBBC+ADQ=B2C+ABDQ
256 251 255 eqtr3d ABCA0B0R+0DBBC+ADQ=B2C+ABDQ
257 249 256 oveq12d ABCA0B0R+0DAACBDQ+BBC+ADQ=A2CABDQ+B2C+ABDQ
258 174 176 subcld ABCA0B0R+0DA2CABD
259 178 176 addcld ABCA0B0R+0DB2C+ABD
260 258 259 26 32 divdird ABCA0B0R+0DA2CABD+B2C+ABDQ=A2CABDQ+B2C+ABDQ
261 174 176 178 nppcan3d ABCA0B0R+0DA2CABD+B2C+ABD=A2C+B2C
262 261 182 185 3eqtr2d ABCA0B0R+0DA2CABD+B2C+ABD=QC
263 258 259 addcld ABCA0B0R+0DA2CABD+B2C+ABD
264 263 8 26 32 divmul2d ABCA0B0R+0DA2CABD+B2C+ABDQ=CA2CABD+B2C+ABD=QC
265 262 264 mpbird ABCA0B0R+0DA2CABD+B2C+ABDQ=C
266 257 260 265 3eqtr2d ABCA0B0R+0DAACBDQ+BBC+ADQ=C
267 237 266 jca ABCA0B0R+0DACBDQ2+BC+ADQ2=R2AACBDQ+BBC+ADQ=C
268 oveq1 X=ACBDQX2=ACBDQ2
269 oveq1 Y=BC+ADQY2=BC+ADQ2
270 268 269 oveqan12d X=ACBDQY=BC+ADQX2+Y2=ACBDQ2+BC+ADQ2
271 270 eqeq1d X=ACBDQY=BC+ADQX2+Y2=R2ACBDQ2+BC+ADQ2=R2
272 oveq2 X=ACBDQAX=AACBDQ
273 oveq2 Y=BC+ADQBY=BBC+ADQ
274 272 273 oveqan12d X=ACBDQY=BC+ADQAX+BY=AACBDQ+BBC+ADQ
275 274 eqeq1d X=ACBDQY=BC+ADQAX+BY=CAACBDQ+BBC+ADQ=C
276 271 275 anbi12d X=ACBDQY=BC+ADQX2+Y2=R2AX+BY=CACBDQ2+BC+ADQ2=R2AACBDQ+BBC+ADQ=C
277 267 276 syl5ibrcom ABCA0B0R+0DX=ACBDQY=BC+ADQX2+Y2=R2AX+BY=C
278 201 277 jaod ABCA0B0R+0DX=AC+BDQY=BCADQX=ACBDQY=BC+ADQX2+Y2=R2AX+BY=C