Metamath Proof Explorer


Theorem itscnhlinecirc02p

Description: Intersection of a nonhorizontal line with a circle: A nonhorizontal line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 28-Jan-2023)

Ref Expression
Hypotheses itscnhlinecirc02p.i I=12
itscnhlinecirc02p.e E=msup
itscnhlinecirc02p.p P=I
itscnhlinecirc02p.s S=SphereE
itscnhlinecirc02p.0 0˙=I×0
itscnhlinecirc02p.l L=LineME
itscnhlinecirc02p.d D=distE
itscnhlinecirc02p.z Z=1x2y
Assertion itscnhlinecirc02p XPYPX2Y2R+XD0˙<R∃!s𝒫s=2ys∃!xZ0˙SRZXLY

Proof

Step Hyp Ref Expression
1 itscnhlinecirc02p.i I=12
2 itscnhlinecirc02p.e E=msup
3 itscnhlinecirc02p.p P=I
4 itscnhlinecirc02p.s S=SphereE
5 itscnhlinecirc02p.0 0˙=I×0
6 itscnhlinecirc02p.l L=LineME
7 itscnhlinecirc02p.d D=distE
8 itscnhlinecirc02p.z Z=1x2y
9 1 2 3 4 5 6 7 itscnhlinecirc02plem3 XPYPX2Y2R+XD0˙<R0<2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2
10 1 3 rrx2pyel XPX2
11 10 3ad2ant1 XPYPX2Y2X2
12 11 adantr XPYPX2Y2R+XD0˙<RX2
13 1 3 rrx2pyel YPY2
14 13 3ad2ant2 XPYPX2Y2Y2
15 14 adantr XPYPX2Y2R+XD0˙<RY2
16 12 15 resubcld XPYPX2Y2R+XD0˙<RX2Y2
17 16 resqcld XPYPX2Y2R+XD0˙<RX2Y22
18 1 3 rrx2pxel YPY1
19 18 3ad2ant2 XPYPX2Y2Y1
20 19 adantr XPYPX2Y2R+XD0˙<RY1
21 1 3 rrx2pxel XPX1
22 21 3ad2ant1 XPYPX2Y2X1
23 22 adantr XPYPX2Y2R+XD0˙<RX1
24 20 23 resubcld XPYPX2Y2R+XD0˙<RY1X1
25 24 resqcld XPYPX2Y2R+XD0˙<RY1X12
26 17 25 readdcld XPYPX2Y2R+XD0˙<RX2Y22+Y1X12
27 11 14 resubcld XPYPX2Y2X2Y2
28 27 resqcld XPYPX2Y2X2Y22
29 19 22 resubcld XPYPX2Y2Y1X1
30 29 resqcld XPYPX2Y2Y1X12
31 11 recnd XPYPX2Y2X2
32 14 recnd XPYPX2Y2Y2
33 simp3 XPYPX2Y2X2Y2
34 31 32 33 subne0d XPYPX2Y2X2Y20
35 27 34 sqgt0d XPYPX2Y20<X2Y22
36 29 sqge0d XPYPX2Y20Y1X12
37 28 30 35 36 addgtge0d XPYPX2Y20<X2Y22+Y1X12
38 37 gt0ne0d XPYPX2Y2X2Y22+Y1X120
39 38 adantr XPYPX2Y2R+XD0˙<RX2Y22+Y1X120
40 2re 2
41 40 a1i XPYPX2Y2R+XD0˙<R2
42 12 20 remulcld XPYPX2Y2R+XD0˙<RX2Y1
43 23 15 remulcld XPYPX2Y2R+XD0˙<RX1Y2
44 42 43 resubcld XPYPX2Y2R+XD0˙<RX2Y1X1Y2
45 24 44 remulcld XPYPX2Y2R+XD0˙<RY1X1X2Y1X1Y2
46 41 45 remulcld XPYPX2Y2R+XD0˙<R2Y1X1X2Y1X1Y2
47 46 renegcld XPYPX2Y2R+XD0˙<R2Y1X1X2Y1X1Y2
48 44 resqcld XPYPX2Y2R+XD0˙<RX2Y1X1Y22
49 rpre R+R
50 49 adantr R+XD0˙<RR
51 50 adantl XPYPX2Y2R+XD0˙<RR
52 51 resqcld XPYPX2Y2R+XD0˙<RR2
53 17 52 remulcld XPYPX2Y2R+XD0˙<RX2Y22R2
54 48 53 resubcld XPYPX2Y2R+XD0˙<RX2Y1X1Y22X2Y22R2
55 eqidd XPYPX2Y2R+XD0˙<R2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2=2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2
56 26 39 47 54 55 requad2 XPYPX2Y2R+XD0˙<R∃!s𝒫s=2ysX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=00<2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2
57 9 56 mpbird XPYPX2Y2R+XD0˙<R∃!s𝒫s=2ysX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
58 0xr 0*
59 58 a1i R+0*
60 pnfxr +∞*
61 60 a1i R++∞*
62 rpxr R+R*
63 rpge0 R+0R
64 ltpnf RR<+∞
65 49 64 syl R+R<+∞
66 59 61 62 63 65 elicod R+R0+∞
67 eqid pP|p12+p22=R2=pP|p12+p22=R2
68 1 2 3 4 5 67 2sphere0 R0+∞0˙SR=pP|p12+p22=R2
69 66 68 syl R+0˙SR=pP|p12+p22=R2
70 69 adantr R+XD0˙<R0˙SR=pP|p12+p22=R2
71 70 adantl XPYPX2Y2R+XD0˙<R0˙SR=pP|p12+p22=R2
72 71 adantr XPYPX2Y2R+XD0˙<Rs𝒫0˙SR=pP|p12+p22=R2
73 72 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=20˙SR=pP|p12+p22=R2
74 73 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ys0˙SR=pP|p12+p22=R2
75 74 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysx0˙SR=pP|p12+p22=R2
76 75 eleq2d XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZ0˙SRZpP|p12+p22=R2
77 fveq1 p=Zp1=Z1
78 8 fveq1i Z1=1x2y1
79 1ne2 12
80 1ex 1V
81 vex xV
82 80 81 fvpr1 121x2y1=x
83 79 82 ax-mp 1x2y1=x
84 78 83 eqtri Z1=x
85 84 a1i p=ZZ1=x
86 77 85 eqtrd p=Zp1=x
87 86 oveq1d p=Zp12=x2
88 fveq1 p=Zp2=Z2
89 8 fveq1i Z2=1x2y2
90 2ex 2V
91 vex yV
92 90 91 fvpr2 121x2y2=y
93 79 92 ax-mp 1x2y2=y
94 89 93 eqtri Z2=y
95 94 a1i p=ZZ2=y
96 88 95 eqtrd p=Zp2=y
97 96 oveq1d p=Zp22=y2
98 87 97 oveq12d p=Zp12+p22=x2+y2
99 98 eqeq1d p=Zp12+p22=R2x2+y2=R2
100 99 elrab ZpP|p12+p22=R2ZPx2+y2=R2
101 100 a1i XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZpP|p12+p22=R2ZPx2+y2=R2
102 76 101 bitrd XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZ0˙SRZPx2+y2=R2
103 simp1 XPYPX2Y2XP
104 simp2 XPYPX2Y2YP
105 fveq1 X=YX2=Y2
106 105 a1i XPYPX=YX2=Y2
107 106 necon3d XPYPX2Y2XY
108 107 ex XPYPX2Y2XY
109 108 3imp XPYPX2Y2XY
110 103 104 109 3jca XPYPX2Y2XPYPXY
111 110 adantr XPYPX2Y2R+XD0˙<RXPYPXY
112 111 adantr XPYPX2Y2R+XD0˙<Rs𝒫XPYPXY
113 112 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2XPYPXY
114 113 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysXPYPXY
115 114 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxXPYPXY
116 eqid X2Y2=X2Y2
117 eqid Y1X1=Y1X1
118 eqid X2Y1X1Y2=X2Y1X1Y2
119 1 2 3 6 116 117 118 rrx2linest2 XPYPXYXLY=pP|X2Y2p1+Y1X1p2=X2Y1X1Y2
120 115 119 syl XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxXLY=pP|X2Y2p1+Y1X1p2=X2Y1X1Y2
121 120 eleq2d XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZXLYZpP|X2Y2p1+Y1X1p2=X2Y1X1Y2
122 86 oveq2d p=ZX2Y2p1=X2Y2x
123 96 oveq2d p=ZY1X1p2=Y1X1y
124 122 123 oveq12d p=ZX2Y2p1+Y1X1p2=X2Y2x+Y1X1y
125 124 eqeq1d p=ZX2Y2p1+Y1X1p2=X2Y1X1Y2X2Y2x+Y1X1y=X2Y1X1Y2
126 125 elrab ZpP|X2Y2p1+Y1X1p2=X2Y1X1Y2ZPX2Y2x+Y1X1y=X2Y1X1Y2
127 126 a1i XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZpP|X2Y2p1+Y1X1p2=X2Y1X1Y2ZPX2Y2x+Y1X1y=X2Y1X1Y2
128 121 127 bitrd XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZXLYZPX2Y2x+Y1X1y=X2Y1X1Y2
129 102 128 anbi12d XPYPX2Y2R+XD0˙<Rs𝒫s=2ysxZ0˙SRZXLYZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2
130 129 reubidva XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZ0˙SRZXLY∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2
131 elelpwi yss𝒫y
132 1 3 prelrrx2 xy1x2yP
133 132 ancoms yx1x2yP
134 8 eleq1i ZP1x2yP
135 133 134 sylibr yxZP
136 135 biantrurd yxx2+y2=R2ZPx2+y2=R2
137 136 bicomd yxZPx2+y2=R2x2+y2=R2
138 135 biantrurd yxX2Y2x+Y1X1y=X2Y1X1Y2ZPX2Y2x+Y1X1y=X2Y1X1Y2
139 138 bicomd yxZPX2Y2x+Y1X1y=X2Y1X1Y2X2Y2x+Y1X1y=X2Y1X1Y2
140 137 139 anbi12d yxZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2x2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
141 140 reubidva y∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
142 131 141 syl yss𝒫∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
143 142 expcom s𝒫ys∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
144 143 adantl XPYPX2Y2R+XD0˙<Rs𝒫ys∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
145 144 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
146 145 imp XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2
147 27 34 jca XPYPX2Y2X2Y2X2Y20
148 147 adantr XPYPX2Y2R+XD0˙<RX2Y2X2Y20
149 148 ad3antrrr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2Y2X2Y20
150 20 ad3antrrr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysY1
151 23 ad3antrrr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX1
152 150 151 resubcld XPYPX2Y2R+XD0˙<Rs𝒫s=2ysY1X1
153 12 ad3antrrr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2
154 153 150 remulcld XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2Y1
155 15 ad3antrrr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysY2
156 151 155 remulcld XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX1Y2
157 154 156 resubcld XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2Y1X1Y2
158 149 152 157 3jca XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2Y2X2Y20Y1X1X2Y1X1Y2
159 simplrl XPYPX2Y2R+XD0˙<Rs𝒫R+
160 159 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2R+
161 160 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysR+
162 131 expcom s𝒫ysy
163 162 adantl XPYPX2Y2R+XD0˙<Rs𝒫ysy
164 163 adantr XPYPX2Y2R+XD0˙<Rs𝒫s=2ysy
165 164 imp XPYPX2Y2R+XD0˙<Rs𝒫s=2ysy
166 158 161 165 3jca XPYPX2Y2R+XD0˙<Rs𝒫s=2ysX2Y2X2Y20Y1X1X2Y1X1Y2R+y
167 eqid X2Y22+Y1X12=X2Y22+Y1X12
168 eqid 2Y1X1X2Y1X1Y2=2Y1X1X2Y1X1Y2
169 eqid X2Y1X1Y22X2Y22R2=X2Y1X1Y22X2Y22R2
170 167 168 169 itsclquadeu X2Y2X2Y20Y1X1X2Y1X1Y2R+y∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2X2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
171 166 170 syl XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xx2+y2=R2X2Y2x+Y1X1y=X2Y1X1Y2X2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
172 146 171 bitrd XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZPx2+y2=R2ZPX2Y2x+Y1X1y=X2Y1X1Y2X2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
173 130 172 bitrd XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZ0˙SRZXLYX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
174 173 ralbidva XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZ0˙SRZXLYysX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
175 174 pm5.32da XPYPX2Y2R+XD0˙<Rs𝒫s=2ys∃!xZ0˙SRZXLYs=2ysX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
176 175 reubidva XPYPX2Y2R+XD0˙<R∃!s𝒫s=2ys∃!xZ0˙SRZXLY∃!s𝒫s=2ysX2Y22+Y1X12y2+2Y1X1X2Y1X1Y2y+X2Y1X1Y22X2Y22R2=0
177 57 176 mpbird XPYPX2Y2R+XD0˙<R∃!s𝒫s=2ys∃!xZ0˙SRZXLY