Metamath Proof Explorer


Theorem knoppcnlem11

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem11.t T=xx+12x
knoppcnlem11.f F=yn0CnT2 Nny
knoppcnlem11.n φN
knoppcnlem11.1 φC
Assertion knoppcnlem11 φseq0f+m0zFzm:0cn

Proof

Step Hyp Ref Expression
1 knoppcnlem11.t T=xx+12x
2 knoppcnlem11.f F=yn0CnT2 Nny
3 knoppcnlem11.n φN
4 knoppcnlem11.1 φC
5 3 adantr φk0N
6 4 adantr φk0C
7 simpr φk0k0
8 1 2 5 6 7 knoppcnlem7 φk0seq0f+m0zFzmk=wseq0+Fwk
9 eqidd φk0wl0kFwl=Fwl
10 simplr φk0wk0
11 elnn0uz k0k0
12 10 11 sylib φk0wk0
13 5 ad2antrr φk0wl0kN
14 6 ad2antrr φk0wl0kC
15 simplr φk0wl0kw
16 elfzuz l0kl0
17 nn0uz 0=0
18 16 17 eleqtrrdi l0kl0
19 18 adantl φk0wl0kl0
20 1 2 13 14 15 19 knoppcnlem3 φk0wl0kFwl
21 20 recnd φk0wl0kFwl
22 9 12 21 fsumser φk0wl=0kFwl=seq0+Fwk
23 22 eqcomd φk0wseq0+Fwk=l=0kFwl
24 23 mpteq2dva φk0wseq0+Fwk=wl=0kFwl
25 8 24 eqtrd φk0seq0f+m0zFzmk=wl=0kFwl
26 eqid TopOpenfld=TopOpenfld
27 retopon topGenran.TopOn
28 27 a1i φk0topGenran.TopOn
29 fzfid φk00kFin
30 5 adantr φk0l0kN
31 6 adantr φk0l0kC
32 18 adantl φk0l0kl0
33 1 2 30 31 32 knoppcnlem10 φk0l0kwFwltopGenran.CnTopOpenfld
34 26 28 29 33 fsumcn φk0wl=0kFwltopGenran.CnTopOpenfld
35 ax-resscn
36 ssid
37 35 36 pm3.2i
38 26 tgioo2 topGenran.=TopOpenfld𝑡
39 26 cnfldtopon TopOpenfldTopOn
40 39 toponrestid TopOpenfld=TopOpenfld𝑡
41 26 38 40 cncfcn cn=topGenran.CnTopOpenfld
42 37 41 ax-mp cn=topGenran.CnTopOpenfld
43 34 42 eleqtrrdi φk0wl=0kFwl:cn
44 25 43 eqeltrd φk0seq0f+m0zFzmk:cn
45 44 fmpttd φk0seq0f+m0zFzmk:0cn
46 0z 0
47 seqfn 0seq0f+m0zFzmFn0
48 46 47 ax-mp seq0f+m0zFzmFn0
49 17 fneq2i seq0f+m0zFzmFn0seq0f+m0zFzmFn0
50 48 49 mpbir seq0f+m0zFzmFn0
51 dffn5 seq0f+m0zFzmFn0seq0f+m0zFzm=k0seq0f+m0zFzmk
52 50 51 mpbi seq0f+m0zFzm=k0seq0f+m0zFzmk
53 52 feq1i seq0f+m0zFzm:0cnk0seq0f+m0zFzmk:0cn
54 45 53 sylibr φseq0f+m0zFzm:0cn