Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcnlem11.t | |
|
knoppcnlem11.f | |
||
knoppcnlem11.n | |
||
knoppcnlem11.1 | |
||
Assertion | knoppcnlem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem11.t | |
|
2 | knoppcnlem11.f | |
|
3 | knoppcnlem11.n | |
|
4 | knoppcnlem11.1 | |
|
5 | 3 | adantr | |
6 | 4 | adantr | |
7 | simpr | |
|
8 | 1 2 5 6 7 | knoppcnlem7 | |
9 | eqidd | |
|
10 | simplr | |
|
11 | elnn0uz | |
|
12 | 10 11 | sylib | |
13 | 5 | ad2antrr | |
14 | 6 | ad2antrr | |
15 | simplr | |
|
16 | elfzuz | |
|
17 | nn0uz | |
|
18 | 16 17 | eleqtrrdi | |
19 | 18 | adantl | |
20 | 1 2 13 14 15 19 | knoppcnlem3 | |
21 | 20 | recnd | |
22 | 9 12 21 | fsumser | |
23 | 22 | eqcomd | |
24 | 23 | mpteq2dva | |
25 | 8 24 | eqtrd | |
26 | eqid | |
|
27 | retopon | |
|
28 | 27 | a1i | |
29 | fzfid | |
|
30 | 5 | adantr | |
31 | 6 | adantr | |
32 | 18 | adantl | |
33 | 1 2 30 31 32 | knoppcnlem10 | |
34 | 26 28 29 33 | fsumcn | |
35 | ax-resscn | |
|
36 | ssid | |
|
37 | 35 36 | pm3.2i | |
38 | 26 | tgioo2 | |
39 | 26 | cnfldtopon | |
40 | 39 | toponrestid | |
41 | 26 38 40 | cncfcn | |
42 | 37 41 | ax-mp | |
43 | 34 42 | eleqtrrdi | |
44 | 25 43 | eqeltrd | |
45 | 44 | fmpttd | |
46 | 0z | |
|
47 | seqfn | |
|
48 | 46 47 | ax-mp | |
49 | 17 | fneq2i | |
50 | 48 49 | mpbir | |
51 | dffn5 | |
|
52 | 50 51 | mpbi | |
53 | 52 | feq1i | |
54 | 45 53 | sylibr | |