Metamath Proof Explorer


Theorem lcmftp

Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn , this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020)

Ref Expression
Assertion lcmftp ABClcm_ABC=AlcmBlcmC

Proof

Step Hyp Ref Expression
1 0z 0
2 eltpg 00ABC0=A0=B0=C
3 1 2 ax-mp 0ABC0=A0=B0=C
4 3 biimpri 0=A0=B0=C0ABC
5 tpssi ABCABC
6 4 5 anim12ci 0=A0=B0=CABCABC0ABC
7 lcmf0val ABC0ABClcm_ABC=0
8 6 7 syl 0=A0=B0=CABClcm_ABC=0
9 0zd C0
10 lcmcom 0C0lcmC=Clcm0
11 9 10 mpancom C0lcmC=Clcm0
12 lcm0val CClcm0=0
13 11 12 eqtrd C0lcmC=0
14 13 eqcomd C0=0lcmC
15 14 3ad2ant3 ABC0=0lcmC
16 15 adantl 0=AABC0=0lcmC
17 0zd B0
18 lcmcom 0B0lcmB=Blcm0
19 17 18 mpancom B0lcmB=Blcm0
20 lcm0val BBlcm0=0
21 19 20 eqtrd B0lcmB=0
22 21 eqcomd B0=0lcmB
23 22 3ad2ant2 ABC0=0lcmB
24 23 adantl 0=AABC0=0lcmB
25 24 oveq1d 0=AABC0lcmC=0lcmBlcmC
26 oveq1 0=A0lcmB=AlcmB
27 26 oveq1d 0=A0lcmBlcmC=AlcmBlcmC
28 27 adantr 0=AABC0lcmBlcmC=AlcmBlcmC
29 16 25 28 3eqtrd 0=AABC0=AlcmBlcmC
30 lcm0val AAlcm0=0
31 30 eqcomd A0=Alcm0
32 31 3ad2ant1 ABC0=Alcm0
33 32 adantl 0=BABC0=Alcm0
34 33 oveq1d 0=BABC0lcmC=Alcm0lcmC
35 13 3ad2ant3 ABC0lcmC=0
36 35 adantl 0=BABC0lcmC=0
37 oveq2 0=BAlcm0=AlcmB
38 37 adantr 0=BABCAlcm0=AlcmB
39 38 oveq1d 0=BABCAlcm0lcmC=AlcmBlcmC
40 34 36 39 3eqtr3d 0=BABC0=AlcmBlcmC
41 lcmcl ABAlcmB0
42 41 nn0zd ABAlcmB
43 lcm0val AlcmBAlcmBlcm0=0
44 43 eqcomd AlcmB0=AlcmBlcm0
45 42 44 syl AB0=AlcmBlcm0
46 45 3adant3 ABC0=AlcmBlcm0
47 oveq2 0=CAlcmBlcm0=AlcmBlcmC
48 46 47 sylan9eqr 0=CABC0=AlcmBlcmC
49 29 40 48 3jaoian 0=A0=B0=CABC0=AlcmBlcmC
50 8 49 eqtrd 0=A0=B0=CABClcm_ABC=AlcmBlcmC
51 42 3adant3 ABCAlcmB
52 simp3 ABCC
53 51 52 jca ABCAlcmBC
54 53 adantl ¬0=A0=B0=CABCAlcmBC
55 dvdslcm AlcmBCAlcmBAlcmBlcmCCAlcmBlcmC
56 54 55 syl ¬0=A0=B0=CABCAlcmBAlcmBlcmCCAlcmBlcmC
57 dvdslcm ABAAlcmBBAlcmB
58 57 3adant3 ABCAAlcmBBAlcmB
59 simp1 ABCA
60 lcmcl AlcmBCAlcmBlcmC0
61 53 60 syl ABCAlcmBlcmC0
62 61 nn0zd ABCAlcmBlcmC
63 59 51 62 3jca ABCAAlcmBAlcmBlcmC
64 dvdstr AAlcmBAlcmBlcmCAAlcmBAlcmBAlcmBlcmCAAlcmBlcmC
65 63 64 syl ABCAAlcmBAlcmBAlcmBlcmCAAlcmBlcmC
66 65 expd ABCAAlcmBAlcmBAlcmBlcmCAAlcmBlcmC
67 66 com12 AAlcmBABCAlcmBAlcmBlcmCAAlcmBlcmC
68 67 adantr AAlcmBBAlcmBABCAlcmBAlcmBlcmCAAlcmBlcmC
69 58 68 mpcom ABCAlcmBAlcmBlcmCAAlcmBlcmC
70 69 adantl ¬0=A0=B0=CABCAlcmBAlcmBlcmCAAlcmBlcmC
71 70 com12 AlcmBAlcmBlcmC¬0=A0=B0=CABCAAlcmBlcmC
72 71 adantr AlcmBAlcmBlcmCCAlcmBlcmC¬0=A0=B0=CABCAAlcmBlcmC
73 72 impcom ¬0=A0=B0=CABCAlcmBAlcmBlcmCCAlcmBlcmCAAlcmBlcmC
74 simpr AAlcmBBAlcmBBAlcmB
75 57 74 syl ABBAlcmB
76 75 3adant3 ABCBAlcmB
77 76 adantl ¬0=A0=B0=CABCBAlcmB
78 simp2 ABCB
79 78 51 62 3jca ABCBAlcmBAlcmBlcmC
80 79 adantl ¬0=A0=B0=CABCBAlcmBAlcmBlcmC
81 dvdstr BAlcmBAlcmBlcmCBAlcmBAlcmBAlcmBlcmCBAlcmBlcmC
82 80 81 syl ¬0=A0=B0=CABCBAlcmBAlcmBAlcmBlcmCBAlcmBlcmC
83 77 82 mpand ¬0=A0=B0=CABCAlcmBAlcmBlcmCBAlcmBlcmC
84 83 com12 AlcmBAlcmBlcmC¬0=A0=B0=CABCBAlcmBlcmC
85 84 adantr AlcmBAlcmBlcmCCAlcmBlcmC¬0=A0=B0=CABCBAlcmBlcmC
86 85 impcom ¬0=A0=B0=CABCAlcmBAlcmBlcmCCAlcmBlcmCBAlcmBlcmC
87 simpr AlcmBAlcmBlcmCCAlcmBlcmCCAlcmBlcmC
88 87 adantl ¬0=A0=B0=CABCAlcmBAlcmBlcmCCAlcmBlcmCCAlcmBlcmC
89 73 86 88 3jca ¬0=A0=B0=CABCAlcmBAlcmBlcmCCAlcmBlcmCAAlcmBlcmCBAlcmBlcmCCAlcmBlcmC
90 56 89 mpdan ¬0=A0=B0=CABCAAlcmBlcmCBAlcmBlcmCCAlcmBlcmC
91 breq1 m=AmAlcmBlcmCAAlcmBlcmC
92 breq1 m=BmAlcmBlcmCBAlcmBlcmC
93 breq1 m=CmAlcmBlcmCCAlcmBlcmC
94 91 92 93 raltpg ABCmABCmAlcmBlcmCAAlcmBlcmCBAlcmBlcmCCAlcmBlcmC
95 94 adantl ¬0=A0=B0=CABCmABCmAlcmBlcmCAAlcmBlcmCBAlcmBlcmCCAlcmBlcmC
96 90 95 mpbird ¬0=A0=B0=CABCmABCmAlcmBlcmC
97 breq1 m=AmkAk
98 breq1 m=BmkBk
99 breq1 m=CmkCk
100 97 98 99 raltpg ABCmABCmkAkBkCk
101 100 ad2antlr ¬0=A0=B0=CABCkmABCmkAkBkCk
102 simpr ¬0=A0=B0=CABCkk
103 51 ad2antlr ¬0=A0=B0=CABCkAlcmB
104 52 ad2antlr ¬0=A0=B0=CABCkC
105 102 103 104 3jca ¬0=A0=B0=CABCkkAlcmBC
106 105 adantr ¬0=A0=B0=CABCkAkBkCkkAlcmBC
107 3ioran ¬0=A0=B0=C¬0=A¬0=B¬0=C
108 eqcom 0=AA=0
109 108 notbii ¬0=A¬A=0
110 eqcom 0=BB=0
111 110 notbii ¬0=B¬B=0
112 109 111 anbi12i ¬0=A¬0=B¬A=0¬B=0
113 112 biimpi ¬0=A¬0=B¬A=0¬B=0
114 ioran ¬A=0B=0¬A=0¬B=0
115 113 114 sylibr ¬0=A¬0=B¬A=0B=0
116 115 3adant3 ¬0=A¬0=B¬0=C¬A=0B=0
117 107 116 sylbi ¬0=A0=B0=C¬A=0B=0
118 id ABAB
119 118 3adant3 ABCAB
120 117 119 anim12ci ¬0=A0=B0=CABCAB¬A=0B=0
121 lcmn0cl AB¬A=0B=0AlcmB
122 120 121 syl ¬0=A0=B0=CABCAlcmB
123 nnne0 AlcmBAlcmB0
124 123 neneqd AlcmB¬AlcmB=0
125 122 124 syl ¬0=A0=B0=CABC¬AlcmB=0
126 eqcom 0=CC=0
127 126 notbii ¬0=C¬C=0
128 127 biimpi ¬0=C¬C=0
129 128 3ad2ant3 ¬0=A¬0=B¬0=C¬C=0
130 107 129 sylbi ¬0=A0=B0=C¬C=0
131 130 adantr ¬0=A0=B0=CABC¬C=0
132 125 131 jca ¬0=A0=B0=CABC¬AlcmB=0¬C=0
133 132 adantr ¬0=A0=B0=CABCk¬AlcmB=0¬C=0
134 133 adantr ¬0=A0=B0=CABCkAkBkCk¬AlcmB=0¬C=0
135 ioran ¬AlcmB=0C=0¬AlcmB=0¬C=0
136 134 135 sylibr ¬0=A0=B0=CABCkAkBkCk¬AlcmB=0C=0
137 119 adantl ¬0=A0=B0=CABCAB
138 nnz kk
139 137 138 anim12ci ¬0=A0=B0=CABCkkAB
140 3anass kABkAB
141 139 140 sylibr ¬0=A0=B0=CABCkkAB
142 lcmdvds kABAkBkAlcmBk
143 141 142 syl ¬0=A0=B0=CABCkAkBkAlcmBk
144 143 com12 AkBk¬0=A0=B0=CABCkAlcmBk
145 144 3adant3 AkBkCk¬0=A0=B0=CABCkAlcmBk
146 145 impcom ¬0=A0=B0=CABCkAkBkCkAlcmBk
147 simp3 AkBkCkCk
148 147 adantl ¬0=A0=B0=CABCkAkBkCkCk
149 lcmledvds kAlcmBC¬AlcmB=0C=0AlcmBkCkAlcmBlcmCk
150 149 imp kAlcmBC¬AlcmB=0C=0AlcmBkCkAlcmBlcmCk
151 106 136 146 148 150 syl22anc ¬0=A0=B0=CABCkAkBkCkAlcmBlcmCk
152 151 ex ¬0=A0=B0=CABCkAkBkCkAlcmBlcmCk
153 101 152 sylbid ¬0=A0=B0=CABCkmABCmkAlcmBlcmCk
154 153 ralrimiva ¬0=A0=B0=CABCkmABCmkAlcmBlcmCk
155 96 154 jca ¬0=A0=B0=CABCmABCmAlcmBlcmCkmABCmkAlcmBlcmCk
156 109 biimpi ¬0=A¬A=0
157 111 biimpi ¬0=B¬B=0
158 156 157 anim12i ¬0=A¬0=B¬A=0¬B=0
159 158 114 sylibr ¬0=A¬0=B¬A=0B=0
160 159 3adant3 ¬0=A¬0=B¬0=C¬A=0B=0
161 107 160 sylbi ¬0=A0=B0=C¬A=0B=0
162 161 119 anim12ci ¬0=A0=B0=CABCAB¬A=0B=0
163 162 121 syl ¬0=A0=B0=CABCAlcmB
164 163 124 syl ¬0=A0=B0=CABC¬AlcmB=0
165 164 131 jca ¬0=A0=B0=CABC¬AlcmB=0¬C=0
166 165 135 sylibr ¬0=A0=B0=CABC¬AlcmB=0C=0
167 54 166 jca ¬0=A0=B0=CABCAlcmBC¬AlcmB=0C=0
168 lcmn0cl AlcmBC¬AlcmB=0C=0AlcmBlcmC
169 167 168 syl ¬0=A0=B0=CABCAlcmBlcmC
170 5 adantl ¬0=A0=B0=CABCABC
171 tpfi ABCFin
172 171 a1i ¬0=A0=B0=CABCABCFin
173 3 a1i ABC0ABC0=A0=B0=C
174 173 biimpd ABC0ABC0=A0=B0=C
175 174 con3d ABC¬0=A0=B0=C¬0ABC
176 175 impcom ¬0=A0=B0=CABC¬0ABC
177 df-nel 0ABC¬0ABC
178 176 177 sylibr ¬0=A0=B0=CABC0ABC
179 lcmf AlcmBlcmCABCABCFin0ABCAlcmBlcmC=lcm_ABCmABCmAlcmBlcmCkmABCmkAlcmBlcmCk
180 169 170 172 178 179 syl13anc ¬0=A0=B0=CABCAlcmBlcmC=lcm_ABCmABCmAlcmBlcmCkmABCmkAlcmBlcmCk
181 155 180 mpbird ¬0=A0=B0=CABCAlcmBlcmC=lcm_ABC
182 181 eqcomd ¬0=A0=B0=CABClcm_ABC=AlcmBlcmC
183 50 182 pm2.61ian ABClcm_ABC=AlcmBlcmC