Metamath Proof Explorer


Theorem lincdifsn

Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincdifsn.b B=BaseM
lincdifsn.r R=ScalarM
lincdifsn.s S=BaseR
lincdifsn.t ·˙=M
lincdifsn.p +˙=+M
lincdifsn.0 0˙=0R
Assertion lincdifsn MLModV𝒫BXVFSVfinSupp0˙FG=FVXFlinCMV=GlinCMVX+˙FX·˙X

Proof

Step Hyp Ref Expression
1 lincdifsn.b B=BaseM
2 lincdifsn.r R=ScalarM
3 lincdifsn.s S=BaseR
4 lincdifsn.t ·˙=M
5 lincdifsn.p +˙=+M
6 lincdifsn.0 0˙=0R
7 simp11 MLModV𝒫BXVFSVfinSupp0˙FG=FVXMLMod
8 2 fveq2i BaseR=BaseScalarM
9 3 8 eqtri S=BaseScalarM
10 9 oveq1i SV=BaseScalarMV
11 10 eleq2i FSVFBaseScalarMV
12 11 biimpi FSVFBaseScalarMV
13 12 adantr FSVfinSupp0˙FFBaseScalarMV
14 13 3ad2ant2 MLModV𝒫BXVFSVfinSupp0˙FG=FVXFBaseScalarMV
15 1 pweqi 𝒫B=𝒫BaseM
16 15 eleq2i V𝒫BV𝒫BaseM
17 16 biimpi V𝒫BV𝒫BaseM
18 17 3ad2ant2 MLModV𝒫BXVV𝒫BaseM
19 18 3ad2ant1 MLModV𝒫BXVFSVfinSupp0˙FG=FVXV𝒫BaseM
20 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MxVFxMx
21 7 14 19 20 syl3anc MLModV𝒫BXVFSVfinSupp0˙FG=FVXFlinCMV=MxVFxMx
22 lmodcmn MLModMCMnd
23 22 3ad2ant1 MLModV𝒫BXVMCMnd
24 23 3ad2ant1 MLModV𝒫BXVFSVfinSupp0˙FG=FVXMCMnd
25 simp12 MLModV𝒫BXVFSVfinSupp0˙FG=FVXV𝒫B
26 17 anim2i MLModV𝒫BMLModV𝒫BaseM
27 26 3adant3 MLModV𝒫BXVMLModV𝒫BaseM
28 27 3ad2ant1 MLModV𝒫BXVFSVfinSupp0˙FG=FVXMLModV𝒫BaseM
29 simp2l MLModV𝒫BXVFSVfinSupp0˙FG=FVXFSV
30 6 breq2i finSupp0˙FfinSupp0RF
31 30 biimpi finSupp0˙FfinSupp0RF
32 31 adantl FSVfinSupp0˙FfinSupp0RF
33 32 3ad2ant2 MLModV𝒫BXVFSVfinSupp0˙FG=FVXfinSupp0RF
34 2 3 scmfsupp MLModV𝒫BaseMFSVfinSupp0RFfinSupp0MxVFxMx
35 28 29 33 34 syl3anc MLModV𝒫BXVFSVfinSupp0˙FG=FVXfinSupp0MxVFxMx
36 simpl1 MLModV𝒫BXVFSVfinSupp0˙FMLMod
37 36 adantr MLModV𝒫BXVFSVfinSupp0˙FxVMLMod
38 elmapi FSVF:VS
39 ffvelcdm F:VSxVFxS
40 39 ex F:VSxVFxS
41 40 a1d F:VSMLModV𝒫BXVxVFxS
42 38 41 syl FSVMLModV𝒫BXVxVFxS
43 42 adantr FSVfinSupp0˙FMLModV𝒫BXVxVFxS
44 43 impcom MLModV𝒫BXVFSVfinSupp0˙FxVFxS
45 44 imp MLModV𝒫BXVFSVfinSupp0˙FxVFxS
46 elelpwi xVV𝒫BxB
47 46 expcom V𝒫BxVxB
48 47 3ad2ant2 MLModV𝒫BXVxVxB
49 48 adantr MLModV𝒫BXVFSVfinSupp0˙FxVxB
50 49 imp MLModV𝒫BXVFSVfinSupp0˙FxVxB
51 eqid M=M
52 1 2 51 3 lmodvscl MLModFxSxBFxMxB
53 37 45 50 52 syl3anc MLModV𝒫BXVFSVfinSupp0˙FxVFxMxB
54 53 3adantl3 MLModV𝒫BXVFSVfinSupp0˙FG=FVXxVFxMxB
55 simp13 MLModV𝒫BXVFSVfinSupp0˙FG=FVXXV
56 ffvelcdm F:VSXVFXS
57 56 expcom XVF:VSFXS
58 57 3ad2ant3 MLModV𝒫BXVF:VSFXS
59 38 58 syl5com FSVMLModV𝒫BXVFXS
60 59 adantr FSVfinSupp0˙FMLModV𝒫BXVFXS
61 60 impcom MLModV𝒫BXVFSVfinSupp0˙FFXS
62 elelpwi XVV𝒫BXB
63 62 ancoms V𝒫BXVXB
64 63 3adant1 MLModV𝒫BXVXB
65 64 adantr MLModV𝒫BXVFSVfinSupp0˙FXB
66 1 2 4 3 lmodvscl MLModFXSXBFX·˙XB
67 36 61 65 66 syl3anc MLModV𝒫BXVFSVfinSupp0˙FFX·˙XB
68 67 3adant3 MLModV𝒫BXVFSVfinSupp0˙FG=FVXFX·˙XB
69 4 eqcomi M=·˙
70 69 a1i x=XM=·˙
71 fveq2 x=XFx=FX
72 id x=Xx=X
73 70 71 72 oveq123d x=XFxMx=FX·˙X
74 73 adantl MLModV𝒫BXVFSVfinSupp0˙FG=FVXx=XFxMx=FX·˙X
75 1 5 24 25 35 54 55 68 74 gsumdifsnd MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVFxMx=MxVXFxMx+˙FX·˙X
76 fveq1 G=FVXGx=FVXx
77 76 3ad2ant3 MLModV𝒫BXVFSVfinSupp0˙FG=FVXGx=FVXx
78 fvres xVXFVXx=Fx
79 77 78 sylan9eq MLModV𝒫BXVFSVfinSupp0˙FG=FVXxVXGx=Fx
80 79 oveq1d MLModV𝒫BXVFSVfinSupp0˙FG=FVXxVXGxMx=FxMx
81 80 mpteq2dva MLModV𝒫BXVFSVfinSupp0˙FG=FVXxVXGxMx=xVXFxMx
82 81 eqcomd MLModV𝒫BXVFSVfinSupp0˙FG=FVXxVXFxMx=xVXGxMx
83 82 oveq2d MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVXFxMx=MxVXGxMx
84 83 oveq1d MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVXFxMx+˙FX·˙X=MxVXGxMx+˙FX·˙X
85 75 84 eqtrd MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVFxMx=MxVXGxMx+˙FX·˙X
86 eqid V=V
87 86 9 feq23i F:VSF:VBaseScalarM
88 38 87 sylib FSVF:VBaseScalarM
89 88 adantr FSVfinSupp0˙FF:VBaseScalarM
90 89 3ad2ant2 MLModV𝒫BXVFSVfinSupp0˙FG=FVXF:VBaseScalarM
91 difssd MLModV𝒫BXVFSVfinSupp0˙FG=FVXVXV
92 90 91 fssresd MLModV𝒫BXVFSVfinSupp0˙FG=FVXFVX:VXBaseScalarM
93 feq1 G=FVXG:VXBaseScalarMFVX:VXBaseScalarM
94 93 3ad2ant3 MLModV𝒫BXVFSVfinSupp0˙FG=FVXG:VXBaseScalarMFVX:VXBaseScalarM
95 92 94 mpbird MLModV𝒫BXVFSVfinSupp0˙FG=FVXG:VXBaseScalarM
96 fvex BaseScalarMV
97 difexg V𝒫BVXV
98 97 3ad2ant2 MLModV𝒫BXVVXV
99 98 3ad2ant1 MLModV𝒫BXVFSVfinSupp0˙FG=FVXVXV
100 elmapg BaseScalarMVVXVGBaseScalarMVXG:VXBaseScalarM
101 96 99 100 sylancr MLModV𝒫BXVFSVfinSupp0˙FG=FVXGBaseScalarMVXG:VXBaseScalarM
102 95 101 mpbird MLModV𝒫BXVFSVfinSupp0˙FG=FVXGBaseScalarMVX
103 elpwi V𝒫BVB
104 1 sseq2i VBVBaseM
105 104 biimpi VBVBaseM
106 105 ssdifssd VBVXBaseM
107 103 106 syl V𝒫BVXBaseM
108 107 adantl MLModV𝒫BVXBaseM
109 97 adantl MLModV𝒫BVXV
110 elpwg VXVVX𝒫BaseMVXBaseM
111 109 110 syl MLModV𝒫BVX𝒫BaseMVXBaseM
112 108 111 mpbird MLModV𝒫BVX𝒫BaseM
113 112 3adant3 MLModV𝒫BXVVX𝒫BaseM
114 113 3ad2ant1 MLModV𝒫BXVFSVfinSupp0˙FG=FVXVX𝒫BaseM
115 lincval MLModGBaseScalarMVXVX𝒫BaseMGlinCMVX=MxVXGxMx
116 7 102 114 115 syl3anc MLModV𝒫BXVFSVfinSupp0˙FG=FVXGlinCMVX=MxVXGxMx
117 116 eqcomd MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVXGxMx=GlinCMVX
118 117 oveq1d MLModV𝒫BXVFSVfinSupp0˙FG=FVXMxVXGxMx+˙FX·˙X=GlinCMVX+˙FX·˙X
119 21 85 118 3eqtrd MLModV𝒫BXVFSVfinSupp0˙FG=FVXFlinCMV=GlinCMVX+˙FX·˙X