Metamath Proof Explorer


Theorem logf1o2

Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -upi < Im ( z ) < pi . The negative reals are mapped to the numbers with imaginary part equal to _pi . (Contributed by Mario Carneiro, 2-May-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion logf1o2 log D : D 1-1 onto -1 π π

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 logf1o log : 0 1-1 onto ran log
3 f1of1 log : 0 1-1 onto ran log log : 0 1-1 ran log
4 2 3 ax-mp log : 0 1-1 ran log
5 1 logdmss D 0
6 f1ores log : 0 1-1 ran log D 0 log D : D 1-1 onto log D
7 4 5 6 mp2an log D : D 1-1 onto log D
8 f1ofun log : 0 1-1 onto ran log Fun log
9 2 8 ax-mp Fun log
10 f1of log : 0 1-1 onto ran log log : 0 ran log
11 2 10 ax-mp log : 0 ran log
12 11 fdmi dom log = 0
13 5 12 sseqtrri D dom log
14 funimass4 Fun log D dom log log D -1 π π x D log x -1 π π
15 9 13 14 mp2an log D -1 π π x D log x -1 π π
16 1 ellogdm x D x x x +
17 16 simplbi x D x
18 1 logdmn0 x D x 0
19 17 18 logcld x D log x
20 19 imcld x D log x
21 17 18 logimcld x D π < log x log x π
22 21 simpld x D π < log x
23 pire π
24 23 a1i x D π
25 21 simprd x D log x π
26 1 logdmnrp x D ¬ x +
27 lognegb x x 0 x + log x = π
28 17 18 27 syl2anc x D x + log x = π
29 28 necon3bbid x D ¬ x + log x π
30 26 29 mpbid x D log x π
31 30 necomd x D π log x
32 20 24 25 31 leneltd x D log x < π
33 23 renegcli π
34 33 rexri π *
35 23 rexri π *
36 elioo2 π * π * log x π π log x π < log x log x < π
37 34 35 36 mp2an log x π π log x π < log x log x < π
38 20 22 32 37 syl3anbrc x D log x π π
39 imf :
40 ffn : Fn
41 elpreima Fn log x -1 π π log x log x π π
42 39 40 41 mp2b log x -1 π π log x log x π π
43 19 38 42 sylanbrc x D log x -1 π π
44 15 43 mprgbir log D -1 π π
45 elpreima Fn x -1 π π x x π π
46 39 40 45 mp2b x -1 π π x x π π
47 simpl x x π π x
48 eliooord x π π π < x x < π
49 48 adantl x x π π π < x x < π
50 49 simpld x x π π π < x
51 49 simprd x x π π x < π
52 imcl x x
53 52 adantr x x π π x
54 ltle x π x < π x π
55 53 23 54 sylancl x x π π x < π x π
56 51 55 mpd x x π π x π
57 ellogrn x ran log x π < x x π
58 47 50 56 57 syl3anbrc x x π π x ran log
59 logef x ran log log e x = x
60 58 59 syl x x π π log e x = x
61 efcl x e x
62 61 adantr x x π π e x
63 53 adantr x x π π e x x
64 63 recnd x x π π e x x
65 picn π
66 65 a1i x x π π e x π
67 pipos 0 < π
68 23 67 gt0ne0ii π 0
69 68 a1i x x π π e x π 0
70 51 adantr x x π π e x x < π
71 65 mulid1i π 1 = π
72 70 71 breqtrrdi x x π π e x x < π 1
73 1re 1
74 73 a1i x x π π e x 1
75 23 a1i x x π π e x π
76 67 a1i x x π π e x 0 < π
77 ltdivmul x 1 π 0 < π x π < 1 x < π 1
78 63 74 75 76 77 syl112anc x x π π e x x π < 1 x < π 1
79 72 78 mpbird x x π π e x x π < 1
80 1e0p1 1 = 0 + 1
81 79 80 breqtrdi x x π π e x x π < 0 + 1
82 63 recoscld x x π π e x cos x
83 63 resincld x x π π e x sin x
84 82 83 crimd x x π π e x cos x + i sin x = sin x
85 efeul x e x = e x cos x + i sin x
86 85 ad2antrr x x π π e x e x = e x cos x + i sin x
87 86 oveq1d x x π π e x e x e x = e x cos x + i sin x e x
88 82 recnd x x π π e x cos x
89 ax-icn i
90 83 recnd x x π π e x sin x
91 mulcl i sin x i sin x
92 89 90 91 sylancr x x π π e x i sin x
93 88 92 addcld x x π π e x cos x + i sin x
94 recl x x
95 94 ad2antrr x x π π e x x
96 95 recnd x x π π e x x
97 efcl x e x
98 96 97 syl x x π π e x e x
99 efne0 x e x 0
100 96 99 syl x x π π e x e x 0
101 93 98 100 divcan3d x x π π e x e x cos x + i sin x e x = cos x + i sin x
102 87 101 eqtrd x x π π e x e x e x = cos x + i sin x
103 simpr x x π π e x e x
104 95 reefcld x x π π e x e x
105 103 104 100 redivcld x x π π e x e x e x
106 102 105 eqeltrrd x x π π e x cos x + i sin x
107 106 reim0d x x π π e x cos x + i sin x = 0
108 84 107 eqtr3d x x π π e x sin x = 0
109 sineq0 x sin x = 0 x π
110 64 109 syl x x π π e x sin x = 0 x π
111 108 110 mpbid x x π π e x x π
112 0z 0
113 zleltp1 x π 0 x π 0 x π < 0 + 1
114 111 112 113 sylancl x x π π e x x π 0 x π < 0 + 1
115 81 114 mpbird x x π π e x x π 0
116 df-neg 1 = 0 1
117 65 mulm1i -1 π = π
118 50 adantr x x π π e x π < x
119 117 118 eqbrtrid x x π π e x -1 π < x
120 73 renegcli 1
121 120 a1i x x π π e x 1
122 ltmuldiv 1 x π 0 < π -1 π < x 1 < x π
123 121 63 75 76 122 syl112anc x x π π e x -1 π < x 1 < x π
124 119 123 mpbid x x π π e x 1 < x π
125 116 124 eqbrtrrid x x π π e x 0 1 < x π
126 zlem1lt 0 x π 0 x π 0 1 < x π
127 112 111 126 sylancr x x π π e x 0 x π 0 1 < x π
128 125 127 mpbird x x π π e x 0 x π
129 63 75 69 redivcld x x π π e x x π
130 0re 0
131 letri3 x π 0 x π = 0 x π 0 0 x π
132 129 130 131 sylancl x x π π e x x π = 0 x π 0 0 x π
133 115 128 132 mpbir2and x x π π e x x π = 0
134 64 66 69 133 diveq0d x x π π e x x = 0
135 reim0b x x x = 0
136 135 ad2antrr x x π π e x x x = 0
137 134 136 mpbird x x π π e x x
138 137 rpefcld x x π π e x e x +
139 138 ex x x π π e x e x +
140 1 ellogdm e x D e x e x e x +
141 62 139 140 sylanbrc x x π π e x D
142 funfvima2 Fun log D dom log e x D log e x log D
143 9 13 142 mp2an e x D log e x log D
144 141 143 syl x x π π log e x log D
145 60 144 eqeltrrd x x π π x log D
146 46 145 sylbi x -1 π π x log D
147 146 ssriv -1 π π log D
148 44 147 eqssi log D = -1 π π
149 f1oeq3 log D = -1 π π log D : D 1-1 onto log D log D : D 1-1 onto -1 π π
150 148 149 ax-mp log D : D 1-1 onto log D log D : D 1-1 onto -1 π π
151 7 150 mpbi log D : D 1-1 onto -1 π π