Metamath Proof Explorer


Theorem loop1cycl

Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023)

Ref Expression
Assertion loop1cycl GUHGraphfpfCyclesGpf=1p0=AAEdgG

Proof

Step Hyp Ref Expression
1 cyclprop fCyclesGpfPathsGpp0=pf
2 fveq2 f=1pf=p1
3 2 eqeq2d f=1p0=pfp0=p1
4 3 anbi2d f=1fPathsGpp0=pffPathsGpp0=p1
5 4 biimpd f=1fPathsGpp0=pffPathsGpp0=p1
6 1 5 mpan9 fCyclesGpf=1fPathsGpp0=p1
7 pthiswlk fPathsGpfWalksGp
8 7 anim1i fPathsGpp0=p1fWalksGpp0=p1
9 6 8 syl fCyclesGpf=1fWalksGpp0=p1
10 9 anim1i fCyclesGpf=1f=1fWalksGpp0=p1f=1
11 10 anabss3 fCyclesGpf=1fWalksGpp0=p1f=1
12 df-3an fWalksGpp0=p1f=1fWalksGpp0=p1f=1
13 11 12 sylibr fCyclesGpf=1fWalksGpp0=p1f=1
14 3ancomb fWalksGpp0=p1f=1fWalksGpf=1p0=p1
15 13 14 sylib fCyclesGpf=1fWalksGpf=1p0=p1
16 wlkl1loop FuniEdgGfWalksGpf=1p0=p1p0EdgG
17 16 expl FuniEdgGfWalksGpf=1p0=p1p0EdgG
18 eqid iEdgG=iEdgG
19 18 uhgrfun GUHGraphFuniEdgG
20 17 19 syl11 fWalksGpf=1p0=p1GUHGraphp0EdgG
21 20 3impb fWalksGpf=1p0=p1GUHGraphp0EdgG
22 15 21 syl fCyclesGpf=1GUHGraphp0EdgG
23 22 3adant3 fCyclesGpf=1p0=AGUHGraphp0EdgG
24 sneq p0=Ap0=A
25 24 eleq1d p0=Ap0EdgGAEdgG
26 25 3ad2ant3 fCyclesGpf=1p0=Ap0EdgGAEdgG
27 23 26 sylibd fCyclesGpf=1p0=AGUHGraphAEdgG
28 27 exlimivv fpfCyclesGpf=1p0=AGUHGraphAEdgG
29 28 com12 GUHGraphfpfCyclesGpf=1p0=AAEdgG
30 edgval EdgG=raniEdgG
31 30 eleq2i AEdgGAraniEdgG
32 elrnrexdm FuniEdgGAraniEdgGjdomiEdgGA=iEdgGj
33 eqcom A=iEdgGjiEdgGj=A
34 33 rexbii jdomiEdgGA=iEdgGjjdomiEdgGiEdgGj=A
35 32 34 imbitrdi FuniEdgGAraniEdgGjdomiEdgGiEdgGj=A
36 31 35 biimtrid FuniEdgGAEdgGjdomiEdgGiEdgGj=A
37 19 36 syl GUHGraphAEdgGjdomiEdgGiEdgGj=A
38 df-rex jdomiEdgGiEdgGj=AjjdomiEdgGiEdgGj=A
39 37 38 imbitrdi GUHGraphAEdgGjjdomiEdgGiEdgGj=A
40 18 lp1cycl GUHGraphjdomiEdgGiEdgGj=A⟨“j”⟩CyclesG⟨“AA”⟩
41 40 3expib GUHGraphjdomiEdgGiEdgGj=A⟨“j”⟩CyclesG⟨“AA”⟩
42 41 eximdv GUHGraphjjdomiEdgGiEdgGj=Aj⟨“j”⟩CyclesG⟨“AA”⟩
43 39 42 syld GUHGraphAEdgGj⟨“j”⟩CyclesG⟨“AA”⟩
44 s1len ⟨“j”⟩=1
45 44 ax-gen j⟨“j”⟩=1
46 19.29r j⟨“j”⟩CyclesG⟨“AA”⟩j⟨“j”⟩=1j⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1
47 45 46 mpan2 j⟨“j”⟩CyclesG⟨“AA”⟩j⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1
48 43 47 syl6 GUHGraphAEdgGj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1
49 48 imp GUHGraphAEdgGj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1
50 uhgredgn0 GUHGraphAEdgGA𝒫VtxG
51 eldifsni A𝒫VtxGA
52 50 51 syl GUHGraphAEdgGA
53 snnzb AVA
54 52 53 sylibr GUHGraphAEdgGAV
55 s2fv0 AV⟨“AA”⟩0=A
56 54 55 syl GUHGraphAEdgG⟨“AA”⟩0=A
57 56 alrimiv GUHGraphAEdgGj⟨“AA”⟩0=A
58 19.29r j⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1j⟨“AA”⟩0=Aj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
59 49 57 58 syl2anc GUHGraphAEdgGj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
60 df-3an ⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
61 60 exbii j⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=Aj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
62 59 61 sylibr GUHGraphAEdgGj⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
63 s1cli ⟨“j”⟩WordV
64 breq1 f=⟨“j”⟩fCyclesG⟨“AA”⟩⟨“j”⟩CyclesG⟨“AA”⟩
65 fveqeq2 f=⟨“j”⟩f=1⟨“j”⟩=1
66 64 65 3anbi12d f=⟨“j”⟩fCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=A
67 66 rspcev ⟨“j”⟩WordV⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=AfWordVfCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
68 63 67 mpan ⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=AfWordVfCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
69 rexex fWordVfCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=AffCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
70 68 69 syl ⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=AffCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
71 70 exlimiv j⟨“j”⟩CyclesG⟨“AA”⟩⟨“j”⟩=1⟨“AA”⟩0=AffCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
72 62 71 syl GUHGraphAEdgGffCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
73 s2cli ⟨“AA”⟩WordV
74 breq2 p=⟨“AA”⟩fCyclesGpfCyclesG⟨“AA”⟩
75 fveq1 p=⟨“AA”⟩p0=⟨“AA”⟩0
76 75 eqeq1d p=⟨“AA”⟩p0=A⟨“AA”⟩0=A
77 74 76 3anbi13d p=⟨“AA”⟩fCyclesGpf=1p0=AfCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=A
78 77 rspcev ⟨“AA”⟩WordVfCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=ApWordVfCyclesGpf=1p0=A
79 73 78 mpan fCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=ApWordVfCyclesGpf=1p0=A
80 rexex pWordVfCyclesGpf=1p0=ApfCyclesGpf=1p0=A
81 79 80 syl fCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=ApfCyclesGpf=1p0=A
82 81 eximi ffCyclesG⟨“AA”⟩f=1⟨“AA”⟩0=AfpfCyclesGpf=1p0=A
83 72 82 syl GUHGraphAEdgGfpfCyclesGpf=1p0=A
84 83 ex GUHGraphAEdgGfpfCyclesGpf=1p0=A
85 29 84 impbid GUHGraphfpfCyclesGpf=1p0=AAEdgG