Metamath Proof Explorer


Theorem mapdpglem21

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem17.ep E=invrAg·˙z
Assertion mapdpglem21 φinvrAg·˙t=GRE

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem17.ep E=invrAg·˙z
31 27 oveq2d φinvrAg·˙t=invrAg·˙g·˙GRz
32 eqid ScalarC=ScalarC
33 eqid BaseScalarC=BaseScalarC
34 1 7 8 lcdlmod φCLMod
35 1 3 8 dvhlvec φULVec
36 15 lvecdrng ULVecADivRing
37 35 36 syl φADivRing
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mapdpglem11 φg0˙
39 eqid invrA=invrA
40 16 24 39 drnginvrcl ADivRinggBg0˙invrAgB
41 37 25 38 40 syl3anc φinvrAgB
42 1 3 15 16 7 32 33 8 lcdsbase φBaseScalarC=B
43 41 42 eleqtrrd φinvrAgBaseScalarC
44 1 3 15 16 7 13 17 8 25 19 lcdvscl φg·˙GF
45 eqid LSubSpU=LSubSpU
46 eqid LSubSpC=LSubSpC
47 1 3 8 dvhlmod φULMod
48 4 45 6 lspsncl ULModYVNYLSubSpU
49 47 10 48 syl2anc φNYLSubSpU
50 1 2 3 45 7 46 8 49 mapdcl2 φMNYLSubSpC
51 13 46 lssss MNYLSubSpCMNYF
52 50 51 syl φMNYF
53 52 26 sseldd φzF
54 13 17 32 33 18 34 43 44 53 lmodsubdi φinvrAg·˙g·˙GRz=invrAg·˙g·˙GRinvrAg·˙z
55 eqid A=A
56 eqid 1A=1A
57 16 24 55 56 39 drnginvrr ADivRinggBg0˙gAinvrAg=1A
58 37 25 38 57 syl3anc φgAinvrAg=1A
59 eqid 1ScalarC=1ScalarC
60 1 3 15 56 7 32 59 8 lcd1 φ1ScalarC=1A
61 58 60 eqtr4d φgAinvrAg=1ScalarC
62 61 oveq1d φgAinvrAg·˙G=1ScalarC·˙G
63 1 3 15 16 55 7 13 17 8 41 25 19 lcdvsass φgAinvrAg·˙G=invrAg·˙g·˙G
64 13 32 17 59 lmodvs1 CLModGF1ScalarC·˙G=G
65 34 19 64 syl2anc φ1ScalarC·˙G=G
66 62 63 65 3eqtr3d φinvrAg·˙g·˙G=G
67 66 oveq1d φinvrAg·˙g·˙GRinvrAg·˙z=GRinvrAg·˙z
68 30 oveq2i GRE=GRinvrAg·˙z
69 67 68 eqtr4di φinvrAg·˙g·˙GRinvrAg·˙z=GRE
70 31 54 69 3eqtrd φinvrAg·˙t=GRE