Metamath Proof Explorer


Theorem mdegldg

Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses mdegval.d D=ImDegR
mdegval.p P=ImPolyR
mdegval.b B=BaseP
mdegval.z 0˙=0R
mdegval.a A=m0I|m-1Fin
mdegval.h H=hAfldh
mdegldg.y Y=0P
Assertion mdegldg RRingFBFYxAFx0˙Hx=DF

Proof

Step Hyp Ref Expression
1 mdegval.d D=ImDegR
2 mdegval.p P=ImPolyR
3 mdegval.b B=BaseP
4 mdegval.z 0˙=0R
5 mdegval.a A=m0I|m-1Fin
6 mdegval.h H=hAfldh
7 mdegldg.y Y=0P
8 1 2 3 4 5 6 mdegval FBDF=supHFsupp0˙*<
9 8 3ad2ant2 RRingFBFYDF=supHFsupp0˙*<
10 5 6 tdeglem1 H:A0
11 10 a1i RRingFBFYH:A0
12 11 ffund RRingFBFYFunH
13 simp2 RRingFBFYFB
14 simp1 RRingFBFYRRing
15 2 3 4 13 14 mplelsfi RRingFBFYfinSupp0˙F
16 15 fsuppimpd RRingFBFYFsupp0˙Fin
17 imafi FunHFsupp0˙FinHFsupp0˙Fin
18 12 16 17 syl2anc RRingFBFYHFsupp0˙Fin
19 simp3 RRingFBFYFY
20 2 3 mplrcl FBIV
21 20 3ad2ant2 RRingFBFYIV
22 ringgrp RRingRGrp
23 22 3ad2ant1 RRingFBFYRGrp
24 2 5 4 7 21 23 mpl0 RRingFBFYY=A×0˙
25 19 24 neeqtrd RRingFBFYFA×0˙
26 eqid BaseR=BaseR
27 2 26 3 5 13 mplelf RRingFBFYF:ABaseR
28 27 ffnd RRingFBFYFFnA
29 4 fvexi 0˙V
30 ovex 0IV
31 5 30 rabex2 AV
32 fnsuppeq0 FFnAAV0˙VFsupp0˙=F=A×0˙
33 31 32 mp3an2 FFnA0˙VFsupp0˙=F=A×0˙
34 28 29 33 sylancl RRingFBFYFsupp0˙=F=A×0˙
35 34 necon3bid RRingFBFYFsupp0˙FA×0˙
36 25 35 mpbird RRingFBFYFsupp0˙
37 11 ffnd RRingFBFYHFnA
38 suppssdm Fsupp0˙domF
39 38 27 fssdm RRingFBFYFsupp0˙A
40 fnimaeq0 HFnAFsupp0˙AHFsupp0˙=Fsupp0˙=
41 37 39 40 syl2anc RRingFBFYHFsupp0˙=Fsupp0˙=
42 41 necon3bid RRingFBFYHFsupp0˙Fsupp0˙
43 36 42 mpbird RRingFBFYHFsupp0˙
44 imassrn HFsupp0˙ranH
45 11 frnd RRingFBFYranH0
46 44 45 sstrid RRingFBFYHFsupp0˙0
47 nn0ssre 0
48 ressxr *
49 47 48 sstri 0*
50 46 49 sstrdi RRingFBFYHFsupp0˙*
51 xrltso <Or*
52 fisupcl <Or*HFsupp0˙FinHFsupp0˙HFsupp0˙*supHFsupp0˙*<HFsupp0˙
53 51 52 mpan HFsupp0˙FinHFsupp0˙HFsupp0˙*supHFsupp0˙*<HFsupp0˙
54 18 43 50 53 syl3anc RRingFBFYsupHFsupp0˙*<HFsupp0˙
55 9 54 eqeltrd RRingFBFYDFHFsupp0˙
56 37 39 fvelimabd RRingFBFYDFHFsupp0˙xsupp0˙FHx=DF
57 rexsupp FFnAAV0˙Vxsupp0˙FHx=DFxAFx0˙Hx=DF
58 31 29 57 mp3an23 FFnAxsupp0˙FHx=DFxAFx0˙Hx=DF
59 28 58 syl RRingFBFYxsupp0˙FHx=DFxAFx0˙Hx=DF
60 56 59 bitrd RRingFBFYDFHFsupp0˙xAFx0˙Hx=DF
61 55 60 mpbid RRingFBFYxAFx0˙Hx=DF