Metamath Proof Explorer


Theorem mdegldg

Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses mdegval.d D = I mDeg R
mdegval.p P = I mPoly R
mdegval.b B = Base P
mdegval.z 0 ˙ = 0 R
mdegval.a A = m 0 I | m -1 Fin
mdegval.h H = h A fld h
mdegldg.y Y = 0 P
Assertion mdegldg R Ring F B F Y x A F x 0 ˙ H x = D F

Proof

Step Hyp Ref Expression
1 mdegval.d D = I mDeg R
2 mdegval.p P = I mPoly R
3 mdegval.b B = Base P
4 mdegval.z 0 ˙ = 0 R
5 mdegval.a A = m 0 I | m -1 Fin
6 mdegval.h H = h A fld h
7 mdegldg.y Y = 0 P
8 1 2 3 4 5 6 mdegval F B D F = sup H F supp 0 ˙ * <
9 8 3ad2ant2 R Ring F B F Y D F = sup H F supp 0 ˙ * <
10 2 3 mplrcl F B I V
11 10 3ad2ant2 R Ring F B F Y I V
12 5 6 tdeglem1 I V H : A 0
13 11 12 syl R Ring F B F Y H : A 0
14 13 ffund R Ring F B F Y Fun H
15 simp2 R Ring F B F Y F B
16 simp1 R Ring F B F Y R Ring
17 2 3 4 15 16 mplelsfi R Ring F B F Y finSupp 0 ˙ F
18 17 fsuppimpd R Ring F B F Y F supp 0 ˙ Fin
19 imafi Fun H F supp 0 ˙ Fin H F supp 0 ˙ Fin
20 14 18 19 syl2anc R Ring F B F Y H F supp 0 ˙ Fin
21 simp3 R Ring F B F Y F Y
22 ringgrp R Ring R Grp
23 22 3ad2ant1 R Ring F B F Y R Grp
24 2 5 4 7 11 23 mpl0 R Ring F B F Y Y = A × 0 ˙
25 21 24 neeqtrd R Ring F B F Y F A × 0 ˙
26 eqid Base R = Base R
27 2 26 3 5 15 mplelf R Ring F B F Y F : A Base R
28 27 ffnd R Ring F B F Y F Fn A
29 4 fvexi 0 ˙ V
30 ovex 0 I V
31 5 30 rabex2 A V
32 fnsuppeq0 F Fn A A V 0 ˙ V F supp 0 ˙ = F = A × 0 ˙
33 31 32 mp3an2 F Fn A 0 ˙ V F supp 0 ˙ = F = A × 0 ˙
34 28 29 33 sylancl R Ring F B F Y F supp 0 ˙ = F = A × 0 ˙
35 34 necon3bid R Ring F B F Y F supp 0 ˙ F A × 0 ˙
36 25 35 mpbird R Ring F B F Y F supp 0 ˙
37 13 ffnd R Ring F B F Y H Fn A
38 suppssdm F supp 0 ˙ dom F
39 38 27 fssdm R Ring F B F Y F supp 0 ˙ A
40 fnimaeq0 H Fn A F supp 0 ˙ A H F supp 0 ˙ = F supp 0 ˙ =
41 37 39 40 syl2anc R Ring F B F Y H F supp 0 ˙ = F supp 0 ˙ =
42 41 necon3bid R Ring F B F Y H F supp 0 ˙ F supp 0 ˙
43 36 42 mpbird R Ring F B F Y H F supp 0 ˙
44 imassrn H F supp 0 ˙ ran H
45 13 frnd R Ring F B F Y ran H 0
46 44 45 sstrid R Ring F B F Y H F supp 0 ˙ 0
47 nn0ssre 0
48 ressxr *
49 47 48 sstri 0 *
50 46 49 sstrdi R Ring F B F Y H F supp 0 ˙ *
51 xrltso < Or *
52 fisupcl < Or * H F supp 0 ˙ Fin H F supp 0 ˙ H F supp 0 ˙ * sup H F supp 0 ˙ * < H F supp 0 ˙
53 51 52 mpan H F supp 0 ˙ Fin H F supp 0 ˙ H F supp 0 ˙ * sup H F supp 0 ˙ * < H F supp 0 ˙
54 20 43 50 53 syl3anc R Ring F B F Y sup H F supp 0 ˙ * < H F supp 0 ˙
55 9 54 eqeltrd R Ring F B F Y D F H F supp 0 ˙
56 37 39 fvelimabd R Ring F B F Y D F H F supp 0 ˙ x supp 0 ˙ F H x = D F
57 rexsupp F Fn A A V 0 ˙ V x supp 0 ˙ F H x = D F x A F x 0 ˙ H x = D F
58 31 29 57 mp3an23 F Fn A x supp 0 ˙ F H x = D F x A F x 0 ˙ H x = D F
59 28 58 syl R Ring F B F Y x supp 0 ˙ F H x = D F x A F x 0 ˙ H x = D F
60 56 59 bitrd R Ring F B F Y D F H F supp 0 ˙ x A F x 0 ˙ H x = D F
61 55 60 mpbid R Ring F B F Y x A F x 0 ˙ H x = D F