Metamath Proof Explorer


Theorem met1stc

Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis methaus.1 J=MetOpenD
Assertion met1stc D∞MetXJ1st𝜔

Proof

Step Hyp Ref Expression
1 methaus.1 J=MetOpenD
2 1 mopntop D∞MetXJTop
3 1 mopnuni D∞MetXX=J
4 3 eleq2d D∞MetXxXxJ
5 4 biimpar D∞MetXxJxX
6 simpll D∞MetXxXnD∞MetX
7 simplr D∞MetXxXnxX
8 nnrp nn+
9 8 adantl D∞MetXxXnn+
10 9 rpreccld D∞MetXxXn1n+
11 10 rpxrd D∞MetXxXn1n*
12 1 blopn D∞MetXxX1n*xballD1nJ
13 6 7 11 12 syl3anc D∞MetXxXnxballD1nJ
14 13 fmpttd D∞MetXxXnxballD1n:J
15 14 frnd D∞MetXxXrannxballD1nJ
16 nnex V
17 16 mptex nxballD1nV
18 17 rnex rannxballD1nV
19 18 elpw rannxballD1n𝒫JrannxballD1nJ
20 15 19 sylibr D∞MetXxXrannxballD1n𝒫J
21 omelon ωOn
22 nnenom ω
23 22 ensymi ω
24 isnumi ωOnωdomcard
25 21 23 24 mp2an domcard
26 ovex xballD1nV
27 eqid nxballD1n=nxballD1n
28 26 27 fnmpti nxballD1nFn
29 dffn4 nxballD1nFnnxballD1n:ontorannxballD1n
30 28 29 mpbi nxballD1n:ontorannxballD1n
31 fodomnum domcardnxballD1n:ontorannxballD1nrannxballD1n
32 25 30 31 mp2 rannxballD1n
33 domentr rannxballD1nωrannxballD1nω
34 32 22 33 mp2an rannxballD1nω
35 34 a1i D∞MetXxXrannxballD1nω
36 simpll D∞MetXxXzJxzD∞MetX
37 simprl D∞MetXxXzJxzzJ
38 simprr D∞MetXxXzJxzxz
39 1 mopni2 D∞MetXzJxzr+xballDrz
40 36 37 38 39 syl3anc D∞MetXxXzJxzr+xballDrz
41 simp-4l D∞MetXxXzJxzr+xballDrzy1y<rD∞MetX
42 simp-4r D∞MetXxXzJxzr+xballDrzy1y<rxX
43 simprl D∞MetXxXzJxzr+xballDrzy1y<ry
44 43 nnrpd D∞MetXxXzJxzr+xballDrzy1y<ry+
45 44 rpreccld D∞MetXxXzJxzr+xballDrzy1y<r1y+
46 blcntr D∞MetXxX1y+xxballD1y
47 41 42 45 46 syl3anc D∞MetXxXzJxzr+xballDrzy1y<rxxballD1y
48 45 rpxrd D∞MetXxXzJxzr+xballDrzy1y<r1y*
49 simplrl D∞MetXxXzJxzr+xballDrzy1y<rr+
50 49 rpxrd D∞MetXxXzJxzr+xballDrzy1y<rr*
51 nnrecre y1y
52 51 ad2antrl D∞MetXxXzJxzr+xballDrzy1y<r1y
53 49 rpred D∞MetXxXzJxzr+xballDrzy1y<rr
54 simprr D∞MetXxXzJxzr+xballDrzy1y<r1y<r
55 52 53 54 ltled D∞MetXxXzJxzr+xballDrzy1y<r1yr
56 ssbl D∞MetXxX1y*r*1yrxballD1yxballDr
57 41 42 48 50 55 56 syl221anc D∞MetXxXzJxzr+xballDrzy1y<rxballD1yxballDr
58 simplrr D∞MetXxXzJxzr+xballDrzy1y<rxballDrz
59 57 58 sstrd D∞MetXxXzJxzr+xballDrzy1y<rxballD1yz
60 47 59 jca D∞MetXxXzJxzr+xballDrzy1y<rxxballD1yxballD1yz
61 elrp r+r0<r
62 nnrecl r0<ry1y<r
63 61 62 sylbi r+y1y<r
64 63 ad2antrl D∞MetXxXzJxzr+xballDrzy1y<r
65 60 64 reximddv D∞MetXxXzJxzr+xballDrzyxxballD1yxballD1yz
66 40 65 rexlimddv D∞MetXxXzJxzyxxballD1yxballD1yz
67 ovexd D∞MetXxXzJxzyxballD1yV
68 vex wV
69 oveq2 n=y1n=1y
70 69 oveq2d n=yxballD1n=xballD1y
71 70 cbvmptv nxballD1n=yxballD1y
72 71 elrnmpt wVwrannxballD1nyw=xballD1y
73 68 72 mp1i D∞MetXxXzJxzwrannxballD1nyw=xballD1y
74 eleq2 w=xballD1yxwxxballD1y
75 sseq1 w=xballD1ywzxballD1yz
76 74 75 anbi12d w=xballD1yxwwzxxballD1yxballD1yz
77 76 adantl D∞MetXxXzJxzw=xballD1yxwwzxxballD1yxballD1yz
78 67 73 77 rexxfr2d D∞MetXxXzJxzwrannxballD1nxwwzyxxballD1yxballD1yz
79 66 78 mpbird D∞MetXxXzJxzwrannxballD1nxwwz
80 79 expr D∞MetXxXzJxzwrannxballD1nxwwz
81 80 ralrimiva D∞MetXxXzJxzwrannxballD1nxwwz
82 breq1 y=rannxballD1nyωrannxballD1nω
83 rexeq y=rannxballD1nwyxwwzwrannxballD1nxwwz
84 83 imbi2d y=rannxballD1nxzwyxwwzxzwrannxballD1nxwwz
85 84 ralbidv y=rannxballD1nzJxzwyxwwzzJxzwrannxballD1nxwwz
86 82 85 anbi12d y=rannxballD1nyωzJxzwyxwwzrannxballD1nωzJxzwrannxballD1nxwwz
87 86 rspcev rannxballD1n𝒫JrannxballD1nωzJxzwrannxballD1nxwwzy𝒫JyωzJxzwyxwwz
88 20 35 81 87 syl12anc D∞MetXxXy𝒫JyωzJxzwyxwwz
89 5 88 syldan D∞MetXxJy𝒫JyωzJxzwyxwwz
90 89 ralrimiva D∞MetXxJy𝒫JyωzJxzwyxwwz
91 eqid J=J
92 91 is1stc2 J1st𝜔JTopxJy𝒫JyωzJxzwyxwwz
93 2 90 92 sylanbrc D∞MetXJ1st𝜔