Metamath Proof Explorer


Theorem mon1psubm

Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses mon1psubm.p P=Poly1R
mon1psubm.m M=Monic1pR
mon1psubm.u U=mulGrpP
Assertion mon1psubm RNzRingMSubMndU

Proof

Step Hyp Ref Expression
1 mon1psubm.p P=Poly1R
2 mon1psubm.m M=Monic1pR
3 mon1psubm.u U=mulGrpP
4 eqid BaseP=BaseP
5 1 4 2 mon1pcl xMxBaseP
6 5 ssriv MBaseP
7 6 a1i RNzRingMBaseP
8 eqid 1P=1P
9 eqid deg1R=deg1R
10 1 8 2 9 mon1pid RNzRing1PMdeg1R1P=0
11 10 simpld RNzRing1PM
12 1 ply1nz RNzRingPNzRing
13 nzrring PNzRingPRing
14 12 13 syl RNzRingPRing
15 14 adantr RNzRingxMyMPRing
16 5 ad2antrl RNzRingxMyMxBaseP
17 simprr RNzRingxMyMyM
18 6 17 sselid RNzRingxMyMyBaseP
19 eqid P=P
20 4 19 ringcl PRingxBasePyBasePxPyBaseP
21 15 16 18 20 syl3anc RNzRingxMyMxPyBaseP
22 eqid RLRegR=RLRegR
23 eqid 0P=0P
24 nzrring RNzRingRRing
25 24 adantr RNzRingxMyMRRing
26 1 23 2 mon1pn0 xMx0P
27 26 ad2antrl RNzRingxMyMx0P
28 eqid 1R=1R
29 9 28 2 mon1pldg xMcoe1xdeg1Rx=1R
30 29 ad2antrl RNzRingxMyMcoe1xdeg1Rx=1R
31 eqid UnitR=UnitR
32 22 31 unitrrg RRingUnitRRLRegR
33 24 32 syl RNzRingUnitRRLRegR
34 31 28 1unit RRing1RUnitR
35 24 34 syl RNzRing1RUnitR
36 33 35 sseldd RNzRing1RRLRegR
37 36 adantr RNzRingxMyM1RRLRegR
38 30 37 eqeltrd RNzRingxMyMcoe1xdeg1RxRLRegR
39 1 23 2 mon1pn0 yMy0P
40 39 ad2antll RNzRingxMyMy0P
41 9 1 22 4 19 23 25 16 27 38 18 40 deg1mul2 RNzRingxMyMdeg1RxPy=deg1Rx+deg1Ry
42 9 1 23 4 deg1nn0cl RRingxBasePx0Pdeg1Rx0
43 25 16 27 42 syl3anc RNzRingxMyMdeg1Rx0
44 9 1 23 4 deg1nn0cl RRingyBasePy0Pdeg1Ry0
45 25 18 40 44 syl3anc RNzRingxMyMdeg1Ry0
46 43 45 nn0addcld RNzRingxMyMdeg1Rx+deg1Ry0
47 41 46 eqeltrd RNzRingxMyMdeg1RxPy0
48 9 1 23 4 deg1nn0clb RRingxPyBasePxPy0Pdeg1RxPy0
49 25 21 48 syl2anc RNzRingxMyMxPy0Pdeg1RxPy0
50 47 49 mpbird RNzRingxMyMxPy0P
51 41 fveq2d RNzRingxMyMcoe1xPydeg1RxPy=coe1xPydeg1Rx+deg1Ry
52 eqid R=R
53 1 19 52 4 9 23 25 16 27 18 40 coe1mul4 RNzRingxMyMcoe1xPydeg1Rx+deg1Ry=coe1xdeg1RxRcoe1ydeg1Ry
54 9 28 2 mon1pldg yMcoe1ydeg1Ry=1R
55 54 ad2antll RNzRingxMyMcoe1ydeg1Ry=1R
56 30 55 oveq12d RNzRingxMyMcoe1xdeg1RxRcoe1ydeg1Ry=1RR1R
57 eqid BaseR=BaseR
58 57 28 ringidcl RRing1RBaseR
59 57 52 28 ringlidm RRing1RBaseR1RR1R=1R
60 24 58 59 syl2anc2 RNzRing1RR1R=1R
61 60 adantr RNzRingxMyM1RR1R=1R
62 56 61 eqtrd RNzRingxMyMcoe1xdeg1RxRcoe1ydeg1Ry=1R
63 53 62 eqtrd RNzRingxMyMcoe1xPydeg1Rx+deg1Ry=1R
64 51 63 eqtrd RNzRingxMyMcoe1xPydeg1RxPy=1R
65 1 4 23 9 2 28 ismon1p xPyMxPyBasePxPy0Pcoe1xPydeg1RxPy=1R
66 21 50 64 65 syl3anbrc RNzRingxMyMxPyM
67 66 ralrimivva RNzRingxMyMxPyM
68 3 ringmgp PRingUMnd
69 14 68 syl RNzRingUMnd
70 3 4 mgpbas BaseP=BaseU
71 3 8 ringidval 1P=0U
72 3 19 mgpplusg P=+U
73 70 71 72 issubm UMndMSubMndUMBaseP1PMxMyMxPyM
74 69 73 syl RNzRingMSubMndUMBaseP1PMxMyMxPyM
75 7 11 67 74 mpbir3and RNzRingMSubMndU