Metamath Proof Explorer


Theorem monmat2matmon

Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019) (Revised by AV, 7-Dec-2019)

Ref Expression
Hypotheses monmat2matmon.p P=Poly1R
monmat2matmon.c C=NMatP
monmat2matmon.b B=BaseC
monmat2matmon.m1 ˙=Q
monmat2matmon.e1 ×˙=mulGrpQ
monmat2matmon.x X=var1A
monmat2matmon.a A=NMatR
monmat2matmon.k K=BaseA
monmat2matmon.q Q=Poly1A
monmat2matmon.i I=NpMatToMatPolyR
monmat2matmon.e2 E=mulGrpP
monmat2matmon.y Y=var1R
monmat2matmon.m2 ·˙=C
monmat2matmon.t T=NmatToPolyMatR
Assertion monmat2matmon NFinRCRingMKL0ILEY·˙TM=M˙L×˙X

Proof

Step Hyp Ref Expression
1 monmat2matmon.p P=Poly1R
2 monmat2matmon.c C=NMatP
3 monmat2matmon.b B=BaseC
4 monmat2matmon.m1 ˙=Q
5 monmat2matmon.e1 ×˙=mulGrpQ
6 monmat2matmon.x X=var1A
7 monmat2matmon.a A=NMatR
8 monmat2matmon.k K=BaseA
9 monmat2matmon.q Q=Poly1A
10 monmat2matmon.i I=NpMatToMatPolyR
11 monmat2matmon.e2 E=mulGrpP
12 monmat2matmon.y Y=var1R
13 monmat2matmon.m2 ·˙=C
14 monmat2matmon.t T=NmatToPolyMatR
15 crngring RCRingRRing
16 simpll NFinRRingMKL0NFin
17 simplr NFinRRingMKL0RRing
18 7 8 14 1 2 3 13 11 12 mat2pmatscmxcl NFinRRingMKL0LEY·˙TMB
19 1 2 3 4 5 6 7 9 10 pm2mpfval NFinRRingLEY·˙TMBILEY·˙TM=Qk0LEY·˙TMdecompPMatk˙k×˙X
20 16 17 18 19 syl3anc NFinRRingMKL0ILEY·˙TM=Qk0LEY·˙TMdecompPMatk˙k×˙X
21 15 20 sylanl2 NFinRCRingMKL0ILEY·˙TM=Qk0LEY·˙TMdecompPMatk˙k×˙X
22 simpll NFinRCRingMKL0k0NFinRCRing
23 simpr NFinRCRingMKL0MKL0
24 23 anim1i NFinRCRingMKL0k0MKL0k0
25 df-3an MKL0k0MKL0k0
26 24 25 sylibr NFinRCRingMKL0k0MKL0k0
27 eqid 0A=0A
28 1 2 7 8 27 11 12 13 14 monmatcollpw NFinRCRingMKL0k0LEY·˙TMdecompPMatk=ifk=LM0A
29 22 26 28 syl2anc NFinRCRingMKL0k0LEY·˙TMdecompPMatk=ifk=LM0A
30 29 oveq1d NFinRCRingMKL0k0LEY·˙TMdecompPMatk˙k×˙X=ifk=LM0A˙k×˙X
31 15 a1i k0RCRingRRing
32 31 anim2d k0NFinRCRingNFinRRing
33 32 anim1d k0NFinRCRingMKL0NFinRRingMKL0
34 33 imdistanri NFinRCRingMKL0k0NFinRRingMKL0k0
35 ovif ifk=LM0A˙k×˙X=ifk=LM˙k×˙X0A˙k×˙X
36 7 matring NFinRRingARing
37 9 ply1sca ARingA=ScalarQ
38 36 37 syl NFinRRingA=ScalarQ
39 38 ad2antrr NFinRRingMKL0k0A=ScalarQ
40 39 fveq2d NFinRRingMKL0k00A=0ScalarQ
41 40 oveq1d NFinRRingMKL0k00A˙k×˙X=0ScalarQ˙k×˙X
42 9 ply1lmod ARingQLMod
43 36 42 syl NFinRRingQLMod
44 43 ad2antrr NFinRRingMKL0k0QLMod
45 eqid mulGrpQ=mulGrpQ
46 eqid BaseQ=BaseQ
47 45 46 mgpbas BaseQ=BasemulGrpQ
48 9 ply1ring ARingQRing
49 36 48 syl NFinRRingQRing
50 45 ringmgp QRingmulGrpQMnd
51 49 50 syl NFinRRingmulGrpQMnd
52 51 ad2antrr NFinRRingMKL0k0mulGrpQMnd
53 simpr NFinRRingMKL0k0k0
54 6 9 46 vr1cl ARingXBaseQ
55 36 54 syl NFinRRingXBaseQ
56 55 ad2antrr NFinRRingMKL0k0XBaseQ
57 47 5 52 53 56 mulgnn0cld NFinRRingMKL0k0k×˙XBaseQ
58 eqid ScalarQ=ScalarQ
59 eqid 0ScalarQ=0ScalarQ
60 eqid 0Q=0Q
61 46 58 4 59 60 lmod0vs QLModk×˙XBaseQ0ScalarQ˙k×˙X=0Q
62 44 57 61 syl2anc NFinRRingMKL0k00ScalarQ˙k×˙X=0Q
63 41 62 eqtrd NFinRRingMKL0k00A˙k×˙X=0Q
64 63 ifeq2d NFinRRingMKL0k0ifk=LM˙k×˙X0A˙k×˙X=ifk=LM˙k×˙X0Q
65 35 64 eqtrid NFinRRingMKL0k0ifk=LM0A˙k×˙X=ifk=LM˙k×˙X0Q
66 34 65 syl NFinRCRingMKL0k0ifk=LM0A˙k×˙X=ifk=LM˙k×˙X0Q
67 30 66 eqtrd NFinRCRingMKL0k0LEY·˙TMdecompPMatk˙k×˙X=ifk=LM˙k×˙X0Q
68 67 mpteq2dva NFinRCRingMKL0k0LEY·˙TMdecompPMatk˙k×˙X=k0ifk=LM˙k×˙X0Q
69 68 oveq2d NFinRCRingMKL0Qk0LEY·˙TMdecompPMatk˙k×˙X=Qk0ifk=LM˙k×˙X0Q
70 ringmnd QRingQMnd
71 49 70 syl NFinRRingQMnd
72 71 adantr NFinRRingMKL0QMnd
73 nn0ex 0V
74 73 a1i NFinRRingMKL00V
75 simprr NFinRRingMKL0L0
76 eqid k0ifk=LM˙k×˙X0Q=k0ifk=LM˙k×˙X0Q
77 38 fveq2d NFinRRingBaseA=BaseScalarQ
78 8 77 eqtrid NFinRRingK=BaseScalarQ
79 78 eleq2d NFinRRingMKMBaseScalarQ
80 79 biimpcd MKNFinRRingMBaseScalarQ
81 80 adantr MKL0NFinRRingMBaseScalarQ
82 81 impcom NFinRRingMKL0MBaseScalarQ
83 82 adantr NFinRRingMKL0k0MBaseScalarQ
84 eqid BaseScalarQ=BaseScalarQ
85 46 58 4 84 lmodvscl QLModMBaseScalarQk×˙XBaseQM˙k×˙XBaseQ
86 44 83 57 85 syl3anc NFinRRingMKL0k0M˙k×˙XBaseQ
87 86 ralrimiva NFinRRingMKL0k0M˙k×˙XBaseQ
88 60 72 74 75 76 87 gsummpt1n0 NFinRRingMKL0Qk0ifk=LM˙k×˙X0Q=L/kM˙k×˙X
89 15 88 sylanl2 NFinRCRingMKL0Qk0ifk=LM˙k×˙X0Q=L/kM˙k×˙X
90 69 89 eqtrd NFinRCRingMKL0Qk0LEY·˙TMdecompPMatk˙k×˙X=L/kM˙k×˙X
91 csbov2g L0L/kM˙k×˙X=M˙L/kk×˙X
92 csbov1g L0L/kk×˙X=L/kk×˙X
93 csbvarg L0L/kk=L
94 93 oveq1d L0L/kk×˙X=L×˙X
95 92 94 eqtrd L0L/kk×˙X=L×˙X
96 95 oveq2d L0M˙L/kk×˙X=M˙L×˙X
97 91 96 eqtrd L0L/kM˙k×˙X=M˙L×˙X
98 97 ad2antll NFinRCRingMKL0L/kM˙k×˙X=M˙L×˙X
99 21 90 98 3eqtrd NFinRCRingMKL0ILEY·˙TM=M˙L×˙X