| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
|
| 2 |
|
ax-1cn |
|
| 3 |
|
o1const |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
|
1cnd |
|
| 6 |
|
fzfid |
|
| 7 |
|
elfznn |
|
| 8 |
7
|
adantl |
|
| 9 |
|
mucl |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
zred |
|
| 12 |
11 8
|
nndivred |
|
| 13 |
7
|
nnrpd |
|
| 14 |
|
rpdivcl |
|
| 15 |
13 14
|
sylan2 |
|
| 16 |
15
|
relogcld |
|
| 17 |
12 16
|
remulcld |
|
| 18 |
17
|
recnd |
|
| 19 |
6 18
|
fsumcl |
|
| 20 |
19
|
adantl |
|
| 21 |
|
mulogsumlem |
|
| 22 |
|
sumex |
|
| 23 |
22
|
a1i |
|
| 24 |
21
|
a1i |
|
| 25 |
23 24
|
o1mptrcl |
|
| 26 |
5 20
|
subcld |
|
| 27 |
|
1red |
|
| 28 |
|
fz1ssnn |
|
| 29 |
28
|
a1i |
|
| 30 |
29
|
sselda |
|
| 31 |
30 9
|
syl |
|
| 32 |
31
|
zred |
|
| 33 |
32 30
|
nndivred |
|
| 34 |
33
|
recnd |
|
| 35 |
|
fzfid |
|
| 36 |
|
elfznn |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
nnrpd |
|
| 39 |
38
|
rpcnne0d |
|
| 40 |
|
reccl |
|
| 41 |
39 40
|
syl |
|
| 42 |
35 41
|
fsumcl |
|
| 43 |
|
simpl |
|
| 44 |
43 13 14
|
syl2an |
|
| 45 |
44
|
relogcld |
|
| 46 |
45
|
recnd |
|
| 47 |
34 42 46
|
subdid |
|
| 48 |
47
|
sumeq2dv |
|
| 49 |
|
fzfid |
|
| 50 |
34 42
|
mulcld |
|
| 51 |
18
|
adantlr |
|
| 52 |
49 50 51
|
fsumsub |
|
| 53 |
|
oveq2 |
|
| 54 |
53
|
oveq2d |
|
| 55 |
|
rpre |
|
| 56 |
55
|
adantr |
|
| 57 |
|
ssrab2 |
|
| 58 |
|
simprr |
|
| 59 |
57 58
|
sselid |
|
| 60 |
59 9
|
syl |
|
| 61 |
60
|
zcnd |
|
| 62 |
|
elfznn |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
nnrecred |
|
| 65 |
64
|
recnd |
|
| 66 |
65
|
adantrr |
|
| 67 |
61 66
|
mulcld |
|
| 68 |
54 56 67
|
dvdsflsumcom |
|
| 69 |
|
oveq2 |
|
| 70 |
|
1div1e1 |
|
| 71 |
69 70
|
eqtrdi |
|
| 72 |
|
flge1nn |
|
| 73 |
55 72
|
sylan |
|
| 74 |
|
nnuz |
|
| 75 |
73 74
|
eleqtrdi |
|
| 76 |
|
eluzfz1 |
|
| 77 |
75 76
|
syl |
|
| 78 |
71 49 29 77 65
|
musumsum |
|
| 79 |
31
|
zcnd |
|
| 80 |
79
|
adantr |
|
| 81 |
30
|
adantr |
|
| 82 |
81
|
nnrpd |
|
| 83 |
82
|
rpcnne0d |
|
| 84 |
|
divdiv1 |
|
| 85 |
80 83 39 84
|
syl3anc |
|
| 86 |
34
|
adantr |
|
| 87 |
37
|
nncnd |
|
| 88 |
37
|
nnne0d |
|
| 89 |
86 87 88
|
divrecd |
|
| 90 |
|
nnmulcl |
|
| 91 |
30 36 90
|
syl2an |
|
| 92 |
91
|
nncnd |
|
| 93 |
91
|
nnne0d |
|
| 94 |
80 92 93
|
divrecd |
|
| 95 |
85 89 94
|
3eqtr3rd |
|
| 96 |
95
|
sumeq2dv |
|
| 97 |
35 34 41
|
fsummulc2 |
|
| 98 |
96 97
|
eqtr4d |
|
| 99 |
98
|
sumeq2dv |
|
| 100 |
68 78 99
|
3eqtr3rd |
|
| 101 |
100
|
oveq1d |
|
| 102 |
48 52 101
|
3eqtrd |
|
| 103 |
102
|
adantl |
|
| 104 |
25 26 27 103
|
o1eq |
|
| 105 |
21 104
|
mpbii |
|
| 106 |
5 20 105
|
o1dif |
|
| 107 |
4 106
|
mpbii |
|
| 108 |
107
|
mptru |
|