Metamath Proof Explorer


Theorem mulogsum

Description: Asymptotic formula for sum_ n <_ x , ( mmu ( n ) / n ) log ( x / n ) = O(1) . Equation 10.2.6 of Shapiro, p. 406. (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mulogsum x+n=1xμnnlogxn𝑂1

Proof

Step Hyp Ref Expression
1 rpssre +
2 ax-1cn 1
3 o1const +1x+1𝑂1
4 1 2 3 mp2an x+1𝑂1
5 1cnd x+1
6 fzfid x+1xFin
7 elfznn n1xn
8 7 adantl x+n1xn
9 mucl nμn
10 8 9 syl x+n1xμn
11 10 zred x+n1xμn
12 11 8 nndivred x+n1xμnn
13 7 nnrpd n1xn+
14 rpdivcl x+n+xn+
15 13 14 sylan2 x+n1xxn+
16 15 relogcld x+n1xlogxn
17 12 16 remulcld x+n1xμnnlogxn
18 17 recnd x+n1xμnnlogxn
19 6 18 fsumcl x+n=1xμnnlogxn
20 19 adantl x+n=1xμnnlogxn
21 mulogsumlem x+n=1xμnnm=1xn1mlogxn𝑂1
22 sumex n=1xμnnm=1xn1mlogxnV
23 22 a1i x+n=1xμnnm=1xn1mlogxnV
24 21 a1i x+n=1xμnnm=1xn1mlogxn𝑂1
25 23 24 o1mptrcl x+n=1xμnnm=1xn1mlogxn
26 5 20 subcld x+1n=1xμnnlogxn
27 1red 1
28 fz1ssnn 1x
29 28 a1i x+1x1x
30 29 sselda x+1xn1xn
31 30 9 syl x+1xn1xμn
32 31 zred x+1xn1xμn
33 32 30 nndivred x+1xn1xμnn
34 33 recnd x+1xn1xμnn
35 fzfid x+1xn1x1xnFin
36 elfznn m1xnm
37 36 adantl x+1xn1xm1xnm
38 37 nnrpd x+1xn1xm1xnm+
39 38 rpcnne0d x+1xn1xm1xnmm0
40 reccl mm01m
41 39 40 syl x+1xn1xm1xn1m
42 35 41 fsumcl x+1xn1xm=1xn1m
43 simpl x+1xx+
44 43 13 14 syl2an x+1xn1xxn+
45 44 relogcld x+1xn1xlogxn
46 45 recnd x+1xn1xlogxn
47 34 42 46 subdid x+1xn1xμnnm=1xn1mlogxn=μnnm=1xn1mμnnlogxn
48 47 sumeq2dv x+1xn=1xμnnm=1xn1mlogxn=n=1xμnnm=1xn1mμnnlogxn
49 fzfid x+1x1xFin
50 34 42 mulcld x+1xn1xμnnm=1xn1m
51 18 adantlr x+1xn1xμnnlogxn
52 49 50 51 fsumsub x+1xn=1xμnnm=1xn1mμnnlogxn=n=1xμnnm=1xn1mn=1xμnnlogxn
53 oveq2 k=nm1k=1nm
54 53 oveq2d k=nmμn1k=μn1nm
55 rpre x+x
56 55 adantr x+1xx
57 ssrab2 y|yk
58 simprr x+1xk1xny|ykny|yk
59 57 58 sselid x+1xk1xny|ykn
60 59 9 syl x+1xk1xny|ykμn
61 60 zcnd x+1xk1xny|ykμn
62 elfznn k1xk
63 62 adantl x+1xk1xk
64 63 nnrecred x+1xk1x1k
65 64 recnd x+1xk1x1k
66 65 adantrr x+1xk1xny|yk1k
67 61 66 mulcld x+1xk1xny|ykμn1k
68 54 56 67 dvdsflsumcom x+1xk=1xny|ykμn1k=n=1xm=1xnμn1nm
69 oveq2 k=11k=11
70 1div1e1 11=1
71 69 70 eqtrdi k=11k=1
72 flge1nn x1xx
73 55 72 sylan x+1xx
74 nnuz =1
75 73 74 eleqtrdi x+1xx1
76 eluzfz1 x111x
77 75 76 syl x+1x11x
78 71 49 29 77 65 musumsum x+1xk=1xny|ykμn1k=1
79 31 zcnd x+1xn1xμn
80 79 adantr x+1xn1xm1xnμn
81 30 adantr x+1xn1xm1xnn
82 81 nnrpd x+1xn1xm1xnn+
83 82 rpcnne0d x+1xn1xm1xnnn0
84 divdiv1 μnnn0mm0μnnm=μnnm
85 80 83 39 84 syl3anc x+1xn1xm1xnμnnm=μnnm
86 34 adantr x+1xn1xm1xnμnn
87 37 nncnd x+1xn1xm1xnm
88 37 nnne0d x+1xn1xm1xnm0
89 86 87 88 divrecd x+1xn1xm1xnμnnm=μnn1m
90 nnmulcl nmnm
91 30 36 90 syl2an x+1xn1xm1xnnm
92 91 nncnd x+1xn1xm1xnnm
93 91 nnne0d x+1xn1xm1xnnm0
94 80 92 93 divrecd x+1xn1xm1xnμnnm=μn1nm
95 85 89 94 3eqtr3rd x+1xn1xm1xnμn1nm=μnn1m
96 95 sumeq2dv x+1xn1xm=1xnμn1nm=m=1xnμnn1m
97 35 34 41 fsummulc2 x+1xn1xμnnm=1xn1m=m=1xnμnn1m
98 96 97 eqtr4d x+1xn1xm=1xnμn1nm=μnnm=1xn1m
99 98 sumeq2dv x+1xn=1xm=1xnμn1nm=n=1xμnnm=1xn1m
100 68 78 99 3eqtr3rd x+1xn=1xμnnm=1xn1m=1
101 100 oveq1d x+1xn=1xμnnm=1xn1mn=1xμnnlogxn=1n=1xμnnlogxn
102 48 52 101 3eqtrd x+1xn=1xμnnm=1xn1mlogxn=1n=1xμnnlogxn
103 102 adantl x+1xn=1xμnnm=1xn1mlogxn=1n=1xμnnlogxn
104 25 26 27 103 o1eq x+n=1xμnnm=1xn1mlogxn𝑂1x+1n=1xμnnlogxn𝑂1
105 21 104 mpbii x+1n=1xμnnlogxn𝑂1
106 5 20 105 o1dif x+1𝑂1x+n=1xμnnlogxn𝑂1
107 4 106 mpbii x+n=1xμnnlogxn𝑂1
108 107 mptru x+n=1xμnnlogxn𝑂1