Metamath Proof Explorer


Theorem nacsfix

Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion nacsfix CNoeACSXF:0Cx0FxFx+1y0zyFz=Fy

Proof

Step Hyp Ref Expression
1 fvssunirn FzranF
2 simplrr CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyFy=ranF
3 1 2 sseqtrrid CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyFzFy
4 simpll3 CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyx0FxFx+1
5 simplrl CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyy0
6 simpr CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyzy
7 incssnn0 x0FxFx+1y0zyFyFz
8 4 5 6 7 syl3anc CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyFyFz
9 3 8 eqssd CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyFz=Fy
10 9 ralrimiva CNoeACSXF:0Cx0FxFx+1y0Fy=ranFzyFz=Fy
11 frn F:0CranFC
12 11 3ad2ant2 CNoeACSXF:0Cx0FxFx+1ranFC
13 elpw2g CNoeACSXranF𝒫CranFC
14 13 3ad2ant1 CNoeACSXF:0Cx0FxFx+1ranF𝒫CranFC
15 12 14 mpbird CNoeACSXF:0Cx0FxFx+1ranF𝒫C
16 elex ranF𝒫CranFV
17 15 16 syl CNoeACSXF:0Cx0FxFx+1ranFV
18 ffn F:0CFFn0
19 18 3ad2ant2 CNoeACSXF:0Cx0FxFx+1FFn0
20 0nn0 00
21 fnfvelrn FFn000F0ranF
22 19 20 21 sylancl CNoeACSXF:0Cx0FxFx+1F0ranF
23 22 ne0d CNoeACSXF:0Cx0FxFx+1ranF
24 nn0re a0a
25 24 ad2antrl CNoeACSXF:0Cx0FxFx+1a0b0a
26 nn0re b0b
27 26 ad2antll CNoeACSXF:0Cx0FxFx+1a0b0b
28 simplrr CNoeACSXF:0Cx0FxFx+1a0b0abb0
29 simpll3 CNoeACSXF:0Cx0FxFx+1a0b0abx0FxFx+1
30 simplrl CNoeACSXF:0Cx0FxFx+1a0b0aba0
31 nn0z a0a
32 nn0z b0b
33 eluz abbaab
34 31 32 33 syl2an a0b0baab
35 34 biimpar a0b0abba
36 35 adantll CNoeACSXF:0Cx0FxFx+1a0b0abba
37 incssnn0 x0FxFx+1a0baFaFb
38 29 30 36 37 syl3anc CNoeACSXF:0Cx0FxFx+1a0b0abFaFb
39 ssequn1 FaFbFaFb=Fb
40 38 39 sylib CNoeACSXF:0Cx0FxFx+1a0b0abFaFb=Fb
41 eqimss FaFb=FbFaFbFb
42 40 41 syl CNoeACSXF:0Cx0FxFx+1a0b0abFaFbFb
43 fveq2 c=bFc=Fb
44 43 sseq2d c=bFaFbFcFaFbFb
45 44 rspcev b0FaFbFbc0FaFbFc
46 28 42 45 syl2anc CNoeACSXF:0Cx0FxFx+1a0b0abc0FaFbFc
47 simplrl CNoeACSXF:0Cx0FxFx+1a0b0baa0
48 simpll3 CNoeACSXF:0Cx0FxFx+1a0b0bax0FxFx+1
49 simplrr CNoeACSXF:0Cx0FxFx+1a0b0bab0
50 eluz baabba
51 32 31 50 syl2anr a0b0abba
52 51 biimpar a0b0baab
53 52 adantll CNoeACSXF:0Cx0FxFx+1a0b0baab
54 incssnn0 x0FxFx+1b0abFbFa
55 48 49 53 54 syl3anc CNoeACSXF:0Cx0FxFx+1a0b0baFbFa
56 ssequn2 FbFaFaFb=Fa
57 55 56 sylib CNoeACSXF:0Cx0FxFx+1a0b0baFaFb=Fa
58 eqimss FaFb=FaFaFbFa
59 57 58 syl CNoeACSXF:0Cx0FxFx+1a0b0baFaFbFa
60 fveq2 c=aFc=Fa
61 60 sseq2d c=aFaFbFcFaFbFa
62 61 rspcev a0FaFbFac0FaFbFc
63 47 59 62 syl2anc CNoeACSXF:0Cx0FxFx+1a0b0bac0FaFbFc
64 25 27 46 63 lecasei CNoeACSXF:0Cx0FxFx+1a0b0c0FaFbFc
65 64 ralrimivva CNoeACSXF:0Cx0FxFx+1a0b0c0FaFbFc
66 uneq1 y=Fayz=Faz
67 66 sseq1d y=FayzwFazw
68 67 rexbidv y=FawranFyzwwranFFazw
69 68 ralbidv y=FazranFwranFyzwzranFwranFFazw
70 69 ralrn FFn0yranFzranFwranFyzwa0zranFwranFFazw
71 uneq2 z=FbFaz=FaFb
72 71 sseq1d z=FbFazwFaFbw
73 72 rexbidv z=FbwranFFazwwranFFaFbw
74 73 ralrn FFn0zranFwranFFazwb0wranFFaFbw
75 sseq2 w=FcFaFbwFaFbFc
76 75 rexrn FFn0wranFFaFbwc0FaFbFc
77 76 ralbidv FFn0b0wranFFaFbwb0c0FaFbFc
78 74 77 bitrd FFn0zranFwranFFazwb0c0FaFbFc
79 78 ralbidv FFn0a0zranFwranFFazwa0b0c0FaFbFc
80 70 79 bitrd FFn0yranFzranFwranFyzwa0b0c0FaFbFc
81 19 80 syl CNoeACSXF:0Cx0FxFx+1yranFzranFwranFyzwa0b0c0FaFbFc
82 65 81 mpbird CNoeACSXF:0Cx0FxFx+1yranFzranFwranFyzw
83 isipodrs toIncranFDirsetranFVranFyranFzranFwranFyzw
84 17 23 82 83 syl3anbrc CNoeACSXF:0Cx0FxFx+1toIncranFDirset
85 isnacs3 CNoeACSXCMooreXy𝒫CtoIncyDirsetyy
86 85 simprbi CNoeACSXy𝒫CtoIncyDirsetyy
87 86 3ad2ant1 CNoeACSXF:0Cx0FxFx+1y𝒫CtoIncyDirsetyy
88 fveq2 y=ranFtoIncy=toIncranF
89 88 eleq1d y=ranFtoIncyDirsettoIncranFDirset
90 unieq y=ranFy=ranF
91 id y=ranFy=ranF
92 90 91 eleq12d y=ranFyyranFranF
93 89 92 imbi12d y=ranFtoIncyDirsetyytoIncranFDirsetranFranF
94 93 rspcva ranF𝒫Cy𝒫CtoIncyDirsetyytoIncranFDirsetranFranF
95 15 87 94 syl2anc CNoeACSXF:0Cx0FxFx+1toIncranFDirsetranFranF
96 84 95 mpd CNoeACSXF:0Cx0FxFx+1ranFranF
97 fvelrnb FFn0ranFranFy0Fy=ranF
98 19 97 syl CNoeACSXF:0Cx0FxFx+1ranFranFy0Fy=ranF
99 96 98 mpbid CNoeACSXF:0Cx0FxFx+1y0Fy=ranF
100 10 99 reximddv CNoeACSXF:0Cx0FxFx+1y0zyFz=Fy