Metamath Proof Explorer


Theorem nulmbl2

Description: A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol* ( A ) = 0 while "outer measure zero" means that for any x there is a y containing A with volume less than x . Assuming AC, these notions are equivalent (because the intersection of all such y is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of Fremlin5 p. 193. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion nulmbl2 x+ydomvolAyvol*yxAdomvol

Proof

Step Hyp Ref Expression
1 1rp 1+
2 1 ne0ii +
3 r19.2z +x+ydomvolAyvol*yxx+ydomvolAyvol*yx
4 2 3 mpan x+ydomvolAyvol*yxx+ydomvolAyvol*yx
5 simprl ydomvolAyvol*yxAy
6 mblss ydomvoly
7 6 adantr ydomvolAyvol*yxy
8 5 7 sstrd ydomvolAyvol*yxA
9 8 rexlimiva ydomvolAyvol*yxA
10 9 rexlimivw x+ydomvolAyvol*yxA
11 4 10 syl x+ydomvolAyvol*yxA
12 inss1 zAz
13 elpwi z𝒫z
14 13 adantr z𝒫vol*zz
15 simpr z𝒫vol*zvol*z
16 ovolsscl zAzzvol*zvol*zA
17 12 14 15 16 mp3an2i z𝒫vol*zvol*zA
18 difssd z𝒫vol*zzAz
19 ovolsscl zAzzvol*zvol*zA
20 18 14 15 19 syl3anc z𝒫vol*zvol*zA
21 17 20 readdcld z𝒫vol*zvol*zA+vol*zA
22 21 ad2antrr z𝒫vol*zx+ydomvolAyvol*yxvol*zA+vol*zA
23 15 ad2antrr z𝒫vol*zx+ydomvolAyvol*yxvol*z
24 difssd z𝒫vol*zx+ydomvolAyvol*yxyAy
25 7 adantl z𝒫vol*zx+ydomvolAyvol*yxy
26 rpre x+x
27 26 ad2antlr z𝒫vol*zx+ydomvolAyvol*yxx
28 simprrr z𝒫vol*zx+ydomvolAyvol*yxvol*yx
29 ovollecl yxvol*yxvol*y
30 25 27 28 29 syl3anc z𝒫vol*zx+ydomvolAyvol*yxvol*y
31 ovolsscl yAyyvol*yvol*yA
32 24 25 30 31 syl3anc z𝒫vol*zx+ydomvolAyvol*yxvol*yA
33 23 32 readdcld z𝒫vol*zx+ydomvolAyvol*yxvol*z+vol*yA
34 23 27 readdcld z𝒫vol*zx+ydomvolAyvol*yxvol*z+x
35 17 ad2antrr z𝒫vol*zx+ydomvolAyvol*yxvol*zA
36 20 ad2antrr z𝒫vol*zx+ydomvolAyvol*yxvol*zA
37 inss1 zyz
38 14 ad2antrr z𝒫vol*zx+ydomvolAyvol*yxz
39 ovolsscl zyzzvol*zvol*zy
40 37 38 23 39 mp3an2i z𝒫vol*zx+ydomvolAyvol*yxvol*zy
41 difssd z𝒫vol*zx+ydomvolAyvol*yxzyz
42 ovolsscl zyzzvol*zvol*zy
43 41 38 23 42 syl3anc z𝒫vol*zx+ydomvolAyvol*yxvol*zy
44 43 32 readdcld z𝒫vol*zx+ydomvolAyvol*yxvol*zy+vol*yA
45 simprrl z𝒫vol*zx+ydomvolAyvol*yxAy
46 sslin AyzAzy
47 45 46 syl z𝒫vol*zx+ydomvolAyvol*yxzAzy
48 37 38 sstrid z𝒫vol*zx+ydomvolAyvol*yxzy
49 ovolss zAzyzyvol*zAvol*zy
50 47 48 49 syl2anc z𝒫vol*zx+ydomvolAyvol*yxvol*zAvol*zy
51 38 ssdifssd z𝒫vol*zx+ydomvolAyvol*yxzy
52 25 ssdifssd z𝒫vol*zx+ydomvolAyvol*yxyA
53 51 52 unssd z𝒫vol*zx+ydomvolAyvol*yxzyyA
54 ovolun zyvol*zyyAvol*yAvol*zyyAvol*zy+vol*yA
55 51 43 52 32 54 syl22anc z𝒫vol*zx+ydomvolAyvol*yxvol*zyyAvol*zy+vol*yA
56 ovollecl zyyAvol*zy+vol*yAvol*zyyAvol*zy+vol*yAvol*zyyA
57 53 44 55 56 syl3anc z𝒫vol*zx+ydomvolAyvol*yxvol*zyyA
58 ssun1 zzy
59 undif1 zyy=zy
60 58 59 sseqtrri zzyy
61 ssdif zzyyzAzyyA
62 60 61 ax-mp zAzyyA
63 difundir zyyA=zyAyA
64 62 63 sseqtri zAzyAyA
65 difun1 zyA=zyA
66 ssequn2 AyyA=y
67 45 66 sylib z𝒫vol*zx+ydomvolAyvol*yxyA=y
68 67 difeq2d z𝒫vol*zx+ydomvolAyvol*yxzyA=zy
69 65 68 eqtr3id z𝒫vol*zx+ydomvolAyvol*yxzyA=zy
70 69 uneq1d z𝒫vol*zx+ydomvolAyvol*yxzyAyA=zyyA
71 64 70 sseqtrid z𝒫vol*zx+ydomvolAyvol*yxzAzyyA
72 ovolss zAzyyAzyyAvol*zAvol*zyyA
73 71 53 72 syl2anc z𝒫vol*zx+ydomvolAyvol*yxvol*zAvol*zyyA
74 36 57 44 73 55 letrd z𝒫vol*zx+ydomvolAyvol*yxvol*zAvol*zy+vol*yA
75 35 36 40 44 50 74 le2addd z𝒫vol*zx+ydomvolAyvol*yxvol*zA+vol*zAvol*zy+vol*zy+vol*yA
76 simprl z𝒫vol*zx+ydomvolAyvol*yxydomvol
77 mblsplit ydomvolzvol*zvol*z=vol*zy+vol*zy
78 76 38 23 77 syl3anc z𝒫vol*zx+ydomvolAyvol*yxvol*z=vol*zy+vol*zy
79 78 oveq1d z𝒫vol*zx+ydomvolAyvol*yxvol*z+vol*yA=vol*zy+vol*zy+vol*yA
80 40 recnd z𝒫vol*zx+ydomvolAyvol*yxvol*zy
81 43 recnd z𝒫vol*zx+ydomvolAyvol*yxvol*zy
82 32 recnd z𝒫vol*zx+ydomvolAyvol*yxvol*yA
83 80 81 82 addassd z𝒫vol*zx+ydomvolAyvol*yxvol*zy+vol*zy+vol*yA=vol*zy+vol*zy+vol*yA
84 79 83 eqtrd z𝒫vol*zx+ydomvolAyvol*yxvol*z+vol*yA=vol*zy+vol*zy+vol*yA
85 75 84 breqtrrd z𝒫vol*zx+ydomvolAyvol*yxvol*zA+vol*zAvol*z+vol*yA
86 difss yAy
87 ovolss yAyyvol*yAvol*y
88 86 25 87 sylancr z𝒫vol*zx+ydomvolAyvol*yxvol*yAvol*y
89 32 30 27 88 28 letrd z𝒫vol*zx+ydomvolAyvol*yxvol*yAx
90 32 27 23 89 leadd2dd z𝒫vol*zx+ydomvolAyvol*yxvol*z+vol*yAvol*z+x
91 22 33 34 85 90 letrd z𝒫vol*zx+ydomvolAyvol*yxvol*zA+vol*zAvol*z+x
92 91 rexlimdvaa z𝒫vol*zx+ydomvolAyvol*yxvol*zA+vol*zAvol*z+x
93 92 ralimdva z𝒫vol*zx+ydomvolAyvol*yxx+vol*zA+vol*zAvol*z+x
94 93 impcom x+ydomvolAyvol*yxz𝒫vol*zx+vol*zA+vol*zAvol*z+x
95 21 adantl x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zA
96 95 rexrd x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zA*
97 simprr x+ydomvolAyvol*yxz𝒫vol*zvol*z
98 xralrple vol*zA+vol*zA*vol*zvol*zA+vol*zAvol*zx+vol*zA+vol*zAvol*z+x
99 96 97 98 syl2anc x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zAvol*zx+vol*zA+vol*zAvol*z+x
100 94 99 mpbird x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zAvol*z
101 100 expr x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zAvol*z
102 101 ralrimiva x+ydomvolAyvol*yxz𝒫vol*zvol*zA+vol*zAvol*z
103 ismbl2 AdomvolAz𝒫vol*zvol*zA+vol*zAvol*z
104 11 102 103 sylanbrc x+ydomvolAyvol*yxAdomvol