Metamath Proof Explorer


Theorem ovnovollem2

Description: if I is a cover of ( B ^m { A } ) in RR^ 1 , then F is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem2.a φAV
ovnovollem2.b φBW
ovnovollem2.i φI2A
ovnovollem2.s φBAjkA.Ijk
ovnovollem2.z φZ=sum^jkAvol.Ijk
ovnovollem2.f F=jIjA
Assertion ovnovollem2 φf2Bran.fZ=sum^vol.f

Proof

Step Hyp Ref Expression
1 ovnovollem2.a φAV
2 ovnovollem2.b φBW
3 ovnovollem2.i φI2A
4 ovnovollem2.s φBAjkA.Ijk
5 ovnovollem2.z φZ=sum^jkAvol.Ijk
6 ovnovollem2.f F=jIjA
7 elmapi I2AI:2A
8 3 7 syl φI:2A
9 8 adantr φjI:2A
10 simpr φjj
11 9 10 ffvelcdmd φjIj2A
12 elmapi Ij2AIj:A2
13 11 12 syl φjIj:A2
14 snidg AVAA
15 1 14 syl φAA
16 15 adantr φjAA
17 13 16 ffvelcdmd φjIjA2
18 17 6 fmptd φF:2
19 reex V
20 19 19 xpex 2V
21 nnex V
22 20 21 elmap F2F:2
23 22 a1i φF2F:2
24 18 23 mpbird φF2
25 elsni kAk=A
26 25 fveq2d kA.Ijk=.IjA
27 26 adantl φjkA.Ijk=.IjA
28 elmapfun Ij2AFunIj
29 11 28 syl φjFunIj
30 13 fdmd φjdomIj=A
31 30 eqcomd φjA=domIj
32 16 31 eleqtrd φjAdomIj
33 fvco FunIjAdomIj.IjA=.IjA
34 29 32 33 syl2anc φj.IjA=.IjA
35 34 adantr φjkA.IjA=.IjA
36 id jj
37 fvexd jIjAV
38 6 fvmpt2 jIjAVFj=IjA
39 36 37 38 syl2anc jFj=IjA
40 39 eqcomd jIjA=Fj
41 40 fveq2d j.IjA=.Fj
42 41 adantl φj.IjA=.Fj
43 18 ffund φFunF
44 43 adantr φjFunF
45 6 17 dmmptd φdomF=
46 45 eqcomd φ=domF
47 46 adantr φj=domF
48 10 47 eleqtrd φjjdomF
49 fvco FunFjdomF.Fj=.Fj
50 44 48 49 syl2anc φj.Fj=.Fj
51 50 eqcomd φj.Fj=.Fj
52 42 51 eqtrd φj.IjA=.Fj
53 52 adantr φjkA.IjA=.Fj
54 27 35 53 3eqtrd φjkA.Ijk=.Fj
55 54 ixpeq2dva φjkA.Ijk=kA.Fj
56 snex AV
57 fvex .FjV
58 56 57 ixpconst kA.Fj=.FjA
59 58 a1i φjkA.Fj=.FjA
60 55 59 eqtrd φjkA.Ijk=.FjA
61 60 iuneq2dv φjkA.Ijk=j.FjA
62 nfv jφ
63 21 a1i φV
64 fvexd φj.FjV
65 62 63 64 1 iunmapsn φj.FjA=j.FjA
66 61 65 eqtrd φjkA.Ijk=j.FjA
67 4 66 sseqtrd φBAj.FjA
68 21 57 iunex j.FjV
69 68 a1i φj.FjV
70 56 a1i φAV
71 15 ne0d φA
72 2 69 70 71 mapss2 φBj.FjBAj.FjA
73 67 72 mpbird φBj.Fj
74 icof .:*×*𝒫*
75 74 a1i φ.:*×*𝒫*
76 rexpssxrxp 2*×*
77 76 a1i φ2*×*
78 75 77 18 fcoss φ.F:𝒫*
79 78 ffnd φ.FFn
80 fniunfv .FFnj.Fj=ran.F
81 79 80 syl φj.Fj=ran.F
82 73 81 sseqtrd φBran.F
83 nfcv _jF
84 ressxr *
85 xpss2 *2×*
86 84 85 ax-mp 2×*
87 86 a1i φ2×*
88 18 87 fssd φF:×*
89 83 88 volicofmpt φvol.F=jvol1stFj2ndFj
90 1 adantr φjAV
91 fvexd φjIjAV
92 10 91 38 syl2anc φjFj=IjA
93 92 17 eqeltrd φjFj2
94 1st2nd2 Fj2Fj=1stFj2ndFj
95 93 94 syl φjFj=1stFj2ndFj
96 95 fveq2d φj.Fj=.1stFj2ndFj
97 df-ov 1stFj2ndFj=.1stFj2ndFj
98 97 eqcomi .1stFj2ndFj=1stFj2ndFj
99 98 a1i φj.1stFj2ndFj=1stFj2ndFj
100 50 96 99 3eqtrd φj.Fj=1stFj2ndFj
101 34 52 100 3eqtrd φj.IjA=1stFj2ndFj
102 101 fveq2d φjvol.IjA=vol1stFj2ndFj
103 xp1st Fj21stFj
104 93 103 syl φj1stFj
105 xp2nd Fj22ndFj
106 93 105 syl φj2ndFj
107 volicore 1stFj2ndFjvol1stFj2ndFj
108 104 106 107 syl2anc φjvol1stFj2ndFj
109 102 108 eqeltrd φjvol.IjA
110 109 recnd φjvol.IjA
111 2fveq3 k=Avol.Ijk=vol.IjA
112 111 prodsn AVvol.IjAkAvol.Ijk=vol.IjA
113 90 110 112 syl2anc φjkAvol.Ijk=vol.IjA
114 113 102 eqtr2d φjvol1stFj2ndFj=kAvol.Ijk
115 114 mpteq2dva φjvol1stFj2ndFj=jkAvol.Ijk
116 89 115 eqtrd φvol.F=jkAvol.Ijk
117 116 fveq2d φsum^vol.F=sum^jkAvol.Ijk
118 5 117 eqtr4d φZ=sum^vol.F
119 82 118 jca φBran.FZ=sum^vol.F
120 coeq2 f=F.f=.F
121 120 rneqd f=Fran.f=ran.F
122 121 unieqd f=Fran.f=ran.F
123 122 sseq2d f=FBran.fBran.F
124 coeq2 f=Fvol.f=vol.F
125 124 fveq2d f=Fsum^vol.f=sum^vol.F
126 125 eqeq2d f=FZ=sum^vol.fZ=sum^vol.F
127 123 126 anbi12d f=FBran.fZ=sum^vol.fBran.FZ=sum^vol.F
128 127 rspcev F2Bran.FZ=sum^vol.Ff2Bran.fZ=sum^vol.f
129 24 119 128 syl2anc φf2Bran.fZ=sum^vol.f