Metamath Proof Explorer


Theorem ovnovollem2

Description: if I is a cover of ( B ^m { A } ) in RR^ 1 , then F is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem2.a φ A V
ovnovollem2.b φ B W
ovnovollem2.i φ I 2 A
ovnovollem2.s φ B A j k A . I j k
ovnovollem2.z φ Z = sum^ j k A vol . I j k
ovnovollem2.f F = j I j A
Assertion ovnovollem2 φ f 2 B ran . f Z = sum^ vol . f

Proof

Step Hyp Ref Expression
1 ovnovollem2.a φ A V
2 ovnovollem2.b φ B W
3 ovnovollem2.i φ I 2 A
4 ovnovollem2.s φ B A j k A . I j k
5 ovnovollem2.z φ Z = sum^ j k A vol . I j k
6 ovnovollem2.f F = j I j A
7 elmapi I 2 A I : 2 A
8 3 7 syl φ I : 2 A
9 8 adantr φ j I : 2 A
10 simpr φ j j
11 9 10 ffvelrnd φ j I j 2 A
12 elmapi I j 2 A I j : A 2
13 11 12 syl φ j I j : A 2
14 snidg A V A A
15 1 14 syl φ A A
16 15 adantr φ j A A
17 13 16 ffvelrnd φ j I j A 2
18 17 6 fmptd φ F : 2
19 reex V
20 19 19 xpex 2 V
21 nnex V
22 20 21 elmap F 2 F : 2
23 22 a1i φ F 2 F : 2
24 18 23 mpbird φ F 2
25 elsni k A k = A
26 25 fveq2d k A . I j k = . I j A
27 26 adantl φ j k A . I j k = . I j A
28 elmapfun I j 2 A Fun I j
29 11 28 syl φ j Fun I j
30 13 fdmd φ j dom I j = A
31 30 eqcomd φ j A = dom I j
32 16 31 eleqtrd φ j A dom I j
33 fvco Fun I j A dom I j . I j A = . I j A
34 29 32 33 syl2anc φ j . I j A = . I j A
35 34 adantr φ j k A . I j A = . I j A
36 id j j
37 fvexd j I j A V
38 6 fvmpt2 j I j A V F j = I j A
39 36 37 38 syl2anc j F j = I j A
40 39 eqcomd j I j A = F j
41 40 fveq2d j . I j A = . F j
42 41 adantl φ j . I j A = . F j
43 18 ffund φ Fun F
44 43 adantr φ j Fun F
45 6 17 dmmptd φ dom F =
46 45 eqcomd φ = dom F
47 46 adantr φ j = dom F
48 10 47 eleqtrd φ j j dom F
49 fvco Fun F j dom F . F j = . F j
50 44 48 49 syl2anc φ j . F j = . F j
51 50 eqcomd φ j . F j = . F j
52 42 51 eqtrd φ j . I j A = . F j
53 52 adantr φ j k A . I j A = . F j
54 27 35 53 3eqtrd φ j k A . I j k = . F j
55 54 ixpeq2dva φ j k A . I j k = k A . F j
56 snex A V
57 fvex . F j V
58 56 57 ixpconst k A . F j = . F j A
59 58 a1i φ j k A . F j = . F j A
60 55 59 eqtrd φ j k A . I j k = . F j A
61 60 iuneq2dv φ j k A . I j k = j . F j A
62 nfv j φ
63 21 a1i φ V
64 fvexd φ j . F j V
65 62 63 64 1 iunmapsn φ j . F j A = j . F j A
66 61 65 eqtrd φ j k A . I j k = j . F j A
67 4 66 sseqtrd φ B A j . F j A
68 21 57 iunex j . F j V
69 68 a1i φ j . F j V
70 56 a1i φ A V
71 15 ne0d φ A
72 2 69 70 71 mapss2 φ B j . F j B A j . F j A
73 67 72 mpbird φ B j . F j
74 icof . : * × * 𝒫 *
75 74 a1i φ . : * × * 𝒫 *
76 rexpssxrxp 2 * × *
77 76 a1i φ 2 * × *
78 75 77 18 fcoss φ . F : 𝒫 *
79 78 ffnd φ . F Fn
80 fniunfv . F Fn j . F j = ran . F
81 79 80 syl φ j . F j = ran . F
82 73 81 sseqtrd φ B ran . F
83 nfcv _ j F
84 ressxr *
85 xpss2 * 2 × *
86 84 85 ax-mp 2 × *
87 86 a1i φ 2 × *
88 18 87 fssd φ F : × *
89 83 88 volicofmpt φ vol . F = j vol 1 st F j 2 nd F j
90 1 adantr φ j A V
91 fvexd φ j I j A V
92 10 91 38 syl2anc φ j F j = I j A
93 92 17 eqeltrd φ j F j 2
94 1st2nd2 F j 2 F j = 1 st F j 2 nd F j
95 93 94 syl φ j F j = 1 st F j 2 nd F j
96 95 fveq2d φ j . F j = . 1 st F j 2 nd F j
97 df-ov 1 st F j 2 nd F j = . 1 st F j 2 nd F j
98 97 eqcomi . 1 st F j 2 nd F j = 1 st F j 2 nd F j
99 98 a1i φ j . 1 st F j 2 nd F j = 1 st F j 2 nd F j
100 50 96 99 3eqtrd φ j . F j = 1 st F j 2 nd F j
101 34 52 100 3eqtrd φ j . I j A = 1 st F j 2 nd F j
102 101 fveq2d φ j vol . I j A = vol 1 st F j 2 nd F j
103 xp1st F j 2 1 st F j
104 93 103 syl φ j 1 st F j
105 xp2nd F j 2 2 nd F j
106 93 105 syl φ j 2 nd F j
107 volicore 1 st F j 2 nd F j vol 1 st F j 2 nd F j
108 104 106 107 syl2anc φ j vol 1 st F j 2 nd F j
109 102 108 eqeltrd φ j vol . I j A
110 109 recnd φ j vol . I j A
111 2fveq3 k = A vol . I j k = vol . I j A
112 111 prodsn A V vol . I j A k A vol . I j k = vol . I j A
113 90 110 112 syl2anc φ j k A vol . I j k = vol . I j A
114 113 102 eqtr2d φ j vol 1 st F j 2 nd F j = k A vol . I j k
115 114 mpteq2dva φ j vol 1 st F j 2 nd F j = j k A vol . I j k
116 89 115 eqtrd φ vol . F = j k A vol . I j k
117 116 fveq2d φ sum^ vol . F = sum^ j k A vol . I j k
118 5 117 eqtr4d φ Z = sum^ vol . F
119 82 118 jca φ B ran . F Z = sum^ vol . F
120 coeq2 f = F . f = . F
121 120 rneqd f = F ran . f = ran . F
122 121 unieqd f = F ran . f = ran . F
123 122 sseq2d f = F B ran . f B ran . F
124 coeq2 f = F vol . f = vol . F
125 124 fveq2d f = F sum^ vol . f = sum^ vol . F
126 125 eqeq2d f = F Z = sum^ vol . f Z = sum^ vol . F
127 123 126 anbi12d f = F B ran . f Z = sum^ vol . f B ran . F Z = sum^ vol . F
128 127 rspcev F 2 B ran . F Z = sum^ vol . F f 2 B ran . f Z = sum^ vol . f
129 24 119 128 syl2anc φ f 2 B ran . f Z = sum^ vol . f