Metamath Proof Explorer


Theorem ovolval2lem

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ovolval2lem.1 φF:2
Assertion ovolval2lem φranseq1+absF=rannk=1nvol.Fk

Proof

Step Hyp Ref Expression
1 ovolval2lem.1 φF:2
2 reex V
3 2 2 xpex 2V
4 inss2 22
5 mapss 2V2222
6 3 4 5 mp2an 22
7 3 inex2 2V
8 7 a1i φ2V
9 nnex V
10 9 a1i φV
11 8 10 elmapd φF2F:2
12 1 11 mpbird φF2
13 6 12 sselid φF2
14 1zzd F21
15 nnuz =1
16 elmapi F2F:2
17 16 adantr F2kF:2
18 simpr F2kk
19 17 18 fvovco F2k.Fk=1stFk2ndFk
20 19 fveq2d F2kvol.Fk=vol1stFk2ndFk
21 16 ffvelcdmda F2kFk2
22 xp1st Fk21stFk
23 21 22 syl F2k1stFk
24 xp2nd Fk22ndFk
25 21 24 syl F2k2ndFk
26 volicore 1stFk2ndFkvol1stFk2ndFk
27 23 25 26 syl2anc F2kvol1stFk2ndFk
28 20 27 eqeltrd F2kvol.Fk
29 28 recnd F2kvol.Fk
30 eqid nk=1nvol.Fk=nk=1nvol.Fk
31 eqid seq1+kvol.Fk=seq1+kvol.Fk
32 14 15 29 30 31 fsumsermpt F2nk=1nvol.Fk=seq1+kvol.Fk
33 13 32 syl φnk=1nvol.Fk=seq1+kvol.Fk
34 simpr φk1stFk<2ndFk1stFk<2ndFk
35 34 iftrued φk1stFk<2ndFkif1stFk<2ndFk2ndFk1stFk0=2ndFk1stFk
36 13 23 sylan φk1stFk
37 36 adantr φk¬1stFk<2ndFk1stFk
38 13 25 sylan φk2ndFk
39 38 adantr φk¬1stFk<2ndFk2ndFk
40 ressxr *
41 40 37 sselid φk¬1stFk<2ndFk1stFk*
42 40 39 sselid φk¬1stFk<2ndFk2ndFk*
43 xpss 2V×V
44 43 21 sselid F2kFkV×V
45 1st2ndb FkV×VFk=1stFk2ndFk
46 44 45 sylib F2kFk=1stFk2ndFk
47 13 46 sylan φkFk=1stFk2ndFk
48 47 eqcomd φk1stFk2ndFk=Fk
49 inss1 2
50 49 a1i φ2
51 1 50 fssd φF:
52 51 ffvelcdmda φkFk
53 48 52 eqeltrd φk1stFk2ndFk
54 df-br 1stFk2ndFk1stFk2ndFk
55 53 54 sylibr φk1stFk2ndFk
56 55 adantr φk¬1stFk<2ndFk1stFk2ndFk
57 simpr φk¬1stFk<2ndFk¬1stFk<2ndFk
58 39 37 lenltd φk¬1stFk<2ndFk2ndFk1stFk¬1stFk<2ndFk
59 57 58 mpbird φk¬1stFk<2ndFk2ndFk1stFk
60 41 42 56 59 xrletrid φk¬1stFk<2ndFk1stFk=2ndFk
61 simp3 1stFk2ndFk1stFk=2ndFk1stFk=2ndFk
62 simp1 1stFk2ndFk1stFk=2ndFk1stFk
63 simp2 1stFk2ndFk1stFk=2ndFk2ndFk
64 62 63 eqleltd 1stFk2ndFk1stFk=2ndFk1stFk=2ndFk1stFk2ndFk¬1stFk<2ndFk
65 61 64 mpbid 1stFk2ndFk1stFk=2ndFk1stFk2ndFk¬1stFk<2ndFk
66 65 simprd 1stFk2ndFk1stFk=2ndFk¬1stFk<2ndFk
67 66 iffalsed 1stFk2ndFk1stFk=2ndFkif1stFk<2ndFk2ndFk1stFk0=0
68 63 recnd 1stFk2ndFk1stFk=2ndFk2ndFk
69 61 eqcomd 1stFk2ndFk1stFk=2ndFk2ndFk=1stFk
70 68 69 subeq0bd 1stFk2ndFk1stFk=2ndFk2ndFk1stFk=0
71 67 70 eqtr4d 1stFk2ndFk1stFk=2ndFkif1stFk<2ndFk2ndFk1stFk0=2ndFk1stFk
72 37 39 60 71 syl3anc φk¬1stFk<2ndFkif1stFk<2ndFk2ndFk1stFk0=2ndFk1stFk
73 35 72 pm2.61dan φkif1stFk<2ndFk2ndFk1stFk0=2ndFk1stFk
74 volico 1stFk2ndFkvol1stFk2ndFk=if1stFk<2ndFk2ndFk1stFk0
75 36 38 74 syl2anc φkvol1stFk2ndFk=if1stFk<2ndFk2ndFk1stFk0
76 36 38 55 abssuble0d φk1stFk2ndFk=2ndFk1stFk
77 73 75 76 3eqtr4d φkvol1stFk2ndFk=1stFk2ndFk
78 13 adantr φkF2
79 simpr φkk
80 78 79 20 syl2anc φkvol.Fk=vol1stFk2ndFk
81 46 fveq2d F2kabsFk=abs1stFk2ndFk
82 df-ov 1stFkabs2ndFk=abs1stFk2ndFk
83 82 eqcomi abs1stFk2ndFk=1stFkabs2ndFk
84 83 a1i F2kabs1stFk2ndFk=1stFkabs2ndFk
85 23 recnd F2k1stFk
86 25 recnd F2k2ndFk
87 eqid abs=abs
88 87 cnmetdval 1stFk2ndFk1stFkabs2ndFk=1stFk2ndFk
89 85 86 88 syl2anc F2k1stFkabs2ndFk=1stFk2ndFk
90 81 84 89 3eqtrd F2kabsFk=1stFk2ndFk
91 78 79 90 syl2anc φkabsFk=1stFk2ndFk
92 77 80 91 3eqtr4d φkvol.Fk=absFk
93 92 mpteq2dva φkvol.Fk=kabsFk
94 13 16 syl φF:2
95 rr2sscn2 2×
96 95 a1i φ2×
97 absf abs:
98 subf :×
99 fco abs::×abs:×
100 97 98 99 mp2an abs:×
101 100 a1i φabs:×
102 94 96 101 fcomptss φabsF=kabsFk
103 93 102 eqtr4d φkvol.Fk=absF
104 103 seqeq3d φseq1+kvol.Fk=seq1+absF
105 33 104 eqtr2d φseq1+absF=nk=1nvol.Fk
106 105 rneqd φranseq1+absF=rannk=1nvol.Fk