Metamath Proof Explorer


Theorem pilem2

Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 12-Jun-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses pilem2.1 φA24
pilem2.2 φB+
pilem2.3 φsinA=0
pilem2.4 φsinB=0
Assertion pilem2 φπ+A2B

Proof

Step Hyp Ref Expression
1 pilem2.1 φA24
2 pilem2.2 φB+
3 pilem2.3 φsinA=0
4 pilem2.4 φsinB=0
5 df-pi π=sup+sin-10<
6 inss1 +sin-10+
7 rpssre +
8 6 7 sstri +sin-10
9 8 a1i φ+sin-10
10 0re 0
11 elinel1 y+sin-10y+
12 11 rpge0d y+sin-100y
13 12 rgen y+sin-100y
14 breq1 x=0xy0y
15 14 ralbidv x=0y+sin-10xyy+sin-100y
16 15 rspcev 0y+sin-100yxy+sin-10xy
17 10 13 16 mp2an xy+sin-10xy
18 17 a1i φxy+sin-10xy
19 2re 2
20 2 rpred φB
21 remulcl 2B2B
22 19 20 21 sylancr φ2B
23 elioore A24A
24 1 23 syl φA
25 22 24 resubcld φ2BA
26 4re 4
27 26 a1i φ4
28 eliooord A242<AA<4
29 1 28 syl φ2<AA<4
30 29 simprd φA<4
31 2t2e4 22=4
32 19 a1i φ2
33 0red φ0
34 2pos 0<2
35 34 a1i φ0<2
36 29 simpld φ2<A
37 33 32 24 35 36 lttrd φ0<A
38 24 37 elrpd φA+
39 pilem1 A+sin-10A+sinA=0
40 38 3 39 sylanbrc φA+sin-10
41 40 ne0d φ+sin-10
42 infrecl +sin-10+sin-10xy+sin-10xysup+sin-10<
43 8 17 42 mp3an13 +sin-10sup+sin-10<
44 41 43 syl φsup+sin-10<
45 pilem1 x+sin-10x+sinx=0
46 rpre x+x
47 46 adantl φx+x
48 letric 2x2xx2
49 19 47 48 sylancr φx+2xx2
50 49 ord φx+¬2xx2
51 46 ad2antlr φx+x2x
52 rpgt0 x+0<x
53 52 ad2antlr φx+x20<x
54 simpr φx+x2x2
55 0xr 0*
56 elioc2 0*2x02x0<xx2
57 55 19 56 mp2an x02x0<xx2
58 51 53 54 57 syl3anbrc φx+x2x02
59 sin02gt0 x020<sinx
60 58 59 syl φx+x20<sinx
61 60 gt0ne0d φx+x2sinx0
62 61 ex φx+x2sinx0
63 50 62 syld φx+¬2xsinx0
64 63 necon4bd φx+sinx=02x
65 64 expimpd φx+sinx=02x
66 45 65 biimtrid φx+sin-102x
67 66 ralrimiv φx+sin-102x
68 infregelb +sin-10+sin-10xy+sin-10xy22sup+sin-10<x+sin-102x
69 9 41 18 32 68 syl31anc φ2sup+sin-10<x+sin-102x
70 67 69 mpbird φ2sup+sin-10<
71 pilem1 B+sin-10B+sinB=0
72 2 4 71 sylanbrc φB+sin-10
73 infrelb +sin-10xy+sin-10xyB+sin-10sup+sin-10<B
74 9 18 72 73 syl3anc φsup+sin-10<B
75 32 44 20 70 74 letrd φ2B
76 19 34 pm3.2i 20<2
77 76 a1i φ20<2
78 lemul2 2B20<22B222B
79 32 20 77 78 syl3anc φ2B222B
80 75 79 mpbid φ222B
81 31 80 eqbrtrrid φ42B
82 24 27 22 30 81 ltletrd φA<2B
83 24 22 posdifd φA<2B0<2BA
84 82 83 mpbid φ0<2BA
85 25 84 elrpd φ2BA+
86 22 recnd φ2B
87 24 recnd φA
88 sinsub 2BAsin2BA=sin2BcosAcos2BsinA
89 86 87 88 syl2anc φsin2BA=sin2BcosAcos2BsinA
90 20 recnd φB
91 sin2t Bsin2B=2sinBcosB
92 90 91 syl φsin2B=2sinBcosB
93 4 oveq1d φsinBcosB=0cosB
94 90 coscld φcosB
95 94 mul02d φ0cosB=0
96 93 95 eqtrd φsinBcosB=0
97 96 oveq2d φ2sinBcosB=20
98 2t0e0 20=0
99 97 98 eqtrdi φ2sinBcosB=0
100 92 99 eqtrd φsin2B=0
101 100 oveq1d φsin2BcosA=0cosA
102 87 coscld φcosA
103 102 mul02d φ0cosA=0
104 101 103 eqtrd φsin2BcosA=0
105 3 oveq2d φcos2BsinA=cos2B0
106 86 coscld φcos2B
107 106 mul01d φcos2B0=0
108 105 107 eqtrd φcos2BsinA=0
109 104 108 oveq12d φsin2BcosAcos2BsinA=00
110 0m0e0 00=0
111 109 110 eqtrdi φsin2BcosAcos2BsinA=0
112 89 111 eqtrd φsin2BA=0
113 pilem1 2BA+sin-102BA+sin2BA=0
114 85 112 113 sylanbrc φ2BA+sin-10
115 infrelb +sin-10xy+sin-10xy2BA+sin-10sup+sin-10<2BA
116 9 18 114 115 syl3anc φsup+sin-10<2BA
117 5 116 eqbrtrid φπ2BA
118 5 44 eqeltrid φπ
119 leaddsub πA2Bπ+A2Bπ2BA
120 118 24 22 119 syl3anc φπ+A2Bπ2BA
121 117 120 mpbird φπ+A2B
122 118 24 readdcld φπ+A
123 ledivmul π+AB20<2π+A2Bπ+A2B
124 122 20 77 123 syl3anc φπ+A2Bπ+A2B
125 121 124 mpbird φπ+A2B