Metamath Proof Explorer


Theorem ply1degltel

Description: Characterize elementhood to the set S of polynomials of degree less than N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltlss.p P=Poly1R
ply1degltlss.d D=deg1R
ply1degltlss.1 S=D-1−∞N
ply1degltlss.3 φN0
ply1degltlss.2 φRRing
ply1degltel.1 B=BaseP
Assertion ply1degltel φFSFBDFN1

Proof

Step Hyp Ref Expression
1 ply1degltlss.p P=Poly1R
2 ply1degltlss.d D=deg1R
3 ply1degltlss.1 S=D-1−∞N
4 ply1degltlss.3 φN0
5 ply1degltlss.2 φRRing
6 ply1degltel.1 B=BaseP
7 simpr φF=0PF=0P
8 2 1 6 deg1xrf D:B*
9 8 a1i φD:B*
10 9 ffnd φDFnB
11 1 ply1ring RRingPRing
12 eqid 0P=0P
13 6 12 ring0cl PRing0PB
14 5 11 13 3syl φ0PB
15 2 1 12 deg1z RRingD0P=−∞
16 5 15 syl φD0P=−∞
17 mnfxr −∞*
18 17 a1i φ−∞*
19 4 nn0red φN
20 19 rexrd φN*
21 18 xrleidd φ−∞−∞
22 19 mnfltd φ−∞<N
23 18 20 18 21 22 elicod φ−∞−∞N
24 16 23 eqeltrd φD0P−∞N
25 10 14 24 elpreimad φ0PD-1−∞N
26 25 3 eleqtrrdi φ0PS
27 26 adantr φF=0P0PS
28 7 27 eqeltrd φF=0PFS
29 cnvimass D-1−∞NdomD
30 3 29 eqsstri SdomD
31 8 fdmi domD=B
32 30 31 sseqtri SB
33 32 28 sselid φF=0PFB
34 7 fveq2d φF=0PDF=D0P
35 16 adantr φF=0PD0P=−∞
36 34 35 eqtrd φF=0PDF=−∞
37 1red φ1
38 19 37 resubcld φN1
39 38 rexrd φN1*
40 39 adantr φF=0PN1*
41 40 mnfled φF=0P−∞N1
42 36 41 eqbrtrd φF=0PDFN1
43 pm5.1 FSFBDFN1FSFBDFN1
44 28 33 42 43 syl12anc φF=0PFSFBDFN1
45 3 eleq2i FSFD-1−∞N
46 10 adantr φF0PDFnB
47 elpreima DFnBFD-1−∞NFBDF−∞N
48 46 47 syl φF0PFD-1−∞NFBDF−∞N
49 45 48 bitrid φF0PFSFBDF−∞N
50 17 a1i φF0PFB−∞*
51 20 ad2antrr φF0PFBN*
52 elico1 −∞*N*DF−∞NDF*−∞DFDF<N
53 50 51 52 syl2anc φF0PFBDF−∞NDF*−∞DFDF<N
54 df-3an DF*−∞DFDF<NDF*−∞DFDF<N
55 53 54 bitrdi φF0PFBDF−∞NDF*−∞DFDF<N
56 5 ad2antrr φF0PFBRRing
57 simpr φF0PFBFB
58 simplr φF0PFBF0P
59 2 1 12 6 deg1nn0cl RRingFBF0PDF0
60 56 57 58 59 syl3anc φF0PFBDF0
61 60 nn0red φF0PFBDF
62 61 rexrd φF0PFBDF*
63 62 mnfled φF0PFB−∞DF
64 62 63 jca φF0PFBDF*−∞DF
65 64 biantrurd φF0PFBDF<NDF*−∞DFDF<N
66 60 nn0zd φF0PFBDF
67 4 nn0zd φN
68 67 ad2antrr φF0PFBN
69 zltlem1 DFNDF<NDFN1
70 66 68 69 syl2anc φF0PFBDF<NDFN1
71 55 65 70 3bitr2d φF0PFBDF−∞NDFN1
72 71 pm5.32da φF0PFBDF−∞NFBDFN1
73 49 72 bitrd φF0PFSFBDFN1
74 44 73 pm2.61dane φFSFBDFN1