Metamath Proof Explorer


Theorem pntlemh

Description: Lemma for pnt . Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
Assertion pntlemh φJMNX<KJKJZ

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 12 simpld φX+
19 18 adantr φJMNX+
20 19 relogcld φJMNlogX
21 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
22 21 simp2d φK+
23 22 rpred φK
24 21 simp3d φE011<KUE+
25 24 simp2d φ1<K
26 23 25 rplogcld φlogK+
27 26 adantr φJMNlogK+
28 20 27 rerpdivcld φJMNlogXlogK
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φMNMlogZlogK4NM
30 29 simp1d φM
31 30 adantr φJMNM
32 31 nnred φJMNM
33 elfzuz JMNJM
34 eluznn MJMJ
35 30 33 34 syl2an φJMNJ
36 35 nnred φJMNJ
37 flltp1 logXlogKlogXlogK<logXlogK+1
38 28 37 syl φJMNlogXlogK<logXlogK+1
39 38 16 breqtrrdi φJMNlogXlogK<M
40 elfzle1 JMNMJ
41 40 adantl φJMNMJ
42 28 32 36 39 41 ltletrd φJMNlogXlogK<J
43 20 36 27 ltdivmul2d φJMNlogXlogK<JlogX<JlogK
44 42 43 mpbid φJMNlogX<JlogK
45 22 adantr φJMNK+
46 elfzelz JMNJ
47 46 adantl φJMNJ
48 relogexp K+JlogKJ=JlogK
49 45 47 48 syl2anc φJMNlogKJ=JlogK
50 44 49 breqtrrd φJMNlogX<logKJ
51 45 47 rpexpcld φJMNKJ+
52 logltb X+KJ+X<KJlogX<logKJ
53 19 51 52 syl2anc φJMNX<KJlogX<logKJ
54 50 53 mpbird φJMNX<KJ
55 49 oveq2d φJMN2logKJ=2JlogK
56 2z 2
57 relogexp KJ+2logKJ2=2logKJ
58 51 56 57 sylancl φJMNlogKJ2=2logKJ
59 2cnd φJMN2
60 36 recnd φJMNJ
61 45 relogcld φJMNlogK
62 61 recnd φJMNlogK
63 59 60 62 mulassd φJMN2 JlogK=2JlogK
64 55 58 63 3eqtr4d φJMNlogKJ2=2 JlogK
65 elfzle2 JMNJN
66 65 adantl φJMNJN
67 66 17 breqtrdi φJMNJlogZlogK2
68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
69 68 simp1d φZ+
70 69 adantr φJMNZ+
71 70 relogcld φJMNlogZ
72 71 27 rerpdivcld φJMNlogZlogK
73 72 rehalfcld φJMNlogZlogK2
74 flge logZlogK2JJlogZlogK2JlogZlogK2
75 73 47 74 syl2anc φJMNJlogZlogK2JlogZlogK2
76 67 75 mpbird φJMNJlogZlogK2
77 2re 2
78 77 a1i φJMN2
79 2pos 0<2
80 79 a1i φJMN0<2
81 lemuldiv2 JlogZlogK20<22 JlogZlogKJlogZlogK2
82 36 72 78 80 81 syl112anc φJMN2 JlogZlogKJlogZlogK2
83 76 82 mpbird φJMN2 JlogZlogK
84 remulcl 2J2 J
85 77 36 84 sylancr φJMN2 J
86 85 71 27 lemuldivd φJMN2 JlogKlogZ2 JlogZlogK
87 83 86 mpbird φJMN2 JlogKlogZ
88 64 87 eqbrtrd φJMNlogKJ2logZ
89 rpexpcl KJ+2KJ2+
90 51 56 89 sylancl φJMNKJ2+
91 90 70 logled φJMNKJ2ZlogKJ2logZ
92 88 91 mpbird φJMNKJ2Z
93 70 rprege0d φJMNZ0Z
94 resqrtth Z0ZZ2=Z
95 93 94 syl φJMNZ2=Z
96 92 95 breqtrrd φJMNKJ2Z2
97 51 rprege0d φJMNKJ0KJ
98 70 rpsqrtcld φJMNZ+
99 98 rprege0d φJMNZ0Z
100 le2sq KJ0KJZ0ZKJZKJ2Z2
101 97 99 100 syl2anc φJMNKJZKJ2Z2
102 96 101 mpbird φJMNKJZ
103 54 102 jca φJMNX<KJKJZ