Metamath Proof Explorer


Theorem pntlemp

Description: Lemma for pnt . Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypotheses pntlem3.r R=a+ψaa
pntlem3.a φA+
pntlem3.A φx+RxxA
pntlemp.b φB+
pntlemp.l φL01
pntlemp.d D=A+1
pntlemp.f F=11DL32BD2
pntlemp.K φe01x+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuue
pntlemp.u φU+
pntlemp.u2 φUA
pntlemp.e E=UD
pntlemp.k K=eBE
pntlemp.y φY+1Y
pntlemp.U φzY+∞RzzU
Assertion pntlemp φw+vw+∞RvvUFU3

Proof

Step Hyp Ref Expression
1 pntlem3.r R=a+ψaa
2 pntlem3.a φA+
3 pntlem3.A φx+RxxA
4 pntlemp.b φB+
5 pntlemp.l φL01
6 pntlemp.d D=A+1
7 pntlemp.f F=11DL32BD2
8 pntlemp.K φe01x+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuue
9 pntlemp.u φU+
10 pntlemp.u2 φUA
11 pntlemp.e E=UD
12 pntlemp.k K=eBE
13 pntlemp.y φY+1Y
14 pntlemp.U φzY+∞RzzU
15 oveq2 e=EBe=BE
16 15 fveq2d e=EeBe=eBE
17 16 12 eqtr4di e=EeBe=K
18 17 oveq1d e=EeBe+∞=K+∞
19 oveq2 e=ELe=LE
20 19 oveq2d e=E1+Le=1+LE
21 20 oveq1d e=E1+Lez=1+LEz
22 21 breq1d e=E1+Lez<ky1+LEz<ky
23 22 anbi2d e=Ey<z1+Lez<kyy<z1+LEz<ky
24 21 oveq2d e=Ez1+Lez=z1+LEz
25 breq2 e=ERuueRuuE
26 24 25 raleqbidv e=Euz1+LezRuueuz1+LEzRuuE
27 23 26 anbi12d e=Ey<z1+Lez<kyuz1+LezRuuey<z1+LEz<kyuz1+LEzRuuE
28 27 rexbidv e=Ez+y<z1+Lez<kyuz1+LezRuuez+y<z1+LEz<kyuz1+LEzRuuE
29 28 ralbidv e=Eyx+∞z+y<z1+Lez<kyuz1+LezRuueyx+∞z+y<z1+LEz<kyuz1+LEzRuuE
30 18 29 raleqbidv e=EkeBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuuekK+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE
31 30 rexbidv e=Ex+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuuex+kK+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE
32 oveq1 x=tx+∞=t+∞
33 32 raleqdv x=tyx+∞z+y<z1+LEz<kyuz1+LEzRuuEyt+∞z+y<z1+LEz<kyuz1+LEzRuuE
34 33 ralbidv x=tkK+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuEkK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuE
35 34 cbvrexvw x+kK+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuEt+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuE
36 31 35 bitrdi e=Ex+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuuet+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuE
37 1 2 4 5 6 7 9 10 11 12 pntlemc φE+K+E011<KUE+
38 37 simp3d φE011<KUE+
39 38 simp1d φE01
40 36 8 39 rspcdva φt+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuE
41 13 simpld φY+
42 41 rpred φY
43 13 simprd φ1Y
44 1 pntrlog2bnd Y1Yc+z1+∞Rzlogz2logzn=1zYRznlognzc
45 42 43 44 syl2anc φc+z1+∞Rzlogz2logzn=1zYRznlognzc
46 reeanv t+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzct+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEc+z1+∞Rzlogz2logzn=1zYRznlognzc
47 2 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcA+
48 4 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcB+
49 5 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcL01
50 9 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcU+
51 10 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcUA
52 13 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcY+1Y
53 simpl t+c+t+
54 rpaddcl Y+t+Y+t+
55 41 53 54 syl2an φt+c+Y+t+
56 ltaddrp Yt+Y<Y+t
57 42 53 56 syl2an φt+c+Y<Y+t
58 55 57 jca φt+c+Y+t+Y<Y+t
59 58 adantrr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcY+t+Y<Y+t
60 simprlr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcc+
61 eqid Y+4LE2+Y+tK24+e32BUELE2U3+c=Y+4LE2+Y+tK24+e32BUELE2U3+c
62 14 adantr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzczY+∞RzzU
63 rpxr t+t*
64 63 ad2antrl φt+c+t*
65 rpre t+t
66 65 ad2antrl φt+c+t
67 55 rpred φt+c+Y+t
68 41 adantr φt+c+Y+
69 66 68 ltaddrp2d φt+c+t<Y+t
70 66 67 69 ltled φt+c+tY+t
71 iooss1 t*tY+tY+t+∞t+∞
72 64 70 71 syl2anc φt+c+Y+t+∞t+∞
73 72 adantrr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcY+t+∞t+∞
74 simprrl φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzckK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuE
75 ssralv Y+t+∞t+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEyY+t+∞z+y<z1+LEz<kyuz1+LEzRuuE
76 75 ralimdv Y+t+∞t+∞kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEkK+∞yY+t+∞z+y<z1+LEz<kyuz1+LEzRuuE
77 73 74 76 sylc φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzckK+∞yY+t+∞z+y<z1+LEz<kyuz1+LEzRuuE
78 simprrr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcz1+∞Rzlogz2logzn=1zYRznlognzc
79 1 47 48 49 6 7 50 51 11 12 52 59 60 61 62 77 78 pntleme φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcw+vw+∞RvvUFU3
80 79 expr φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcw+vw+∞RvvUFU3
81 80 rexlimdvva φt+c+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEz1+∞Rzlogz2logzn=1zYRznlognzcw+vw+∞RvvUFU3
82 46 81 biimtrrid φt+kK+∞yt+∞z+y<z1+LEz<kyuz1+LEzRuuEc+z1+∞Rzlogz2logzn=1zYRznlognzcw+vw+∞RvvUFU3
83 40 45 82 mp2and φw+vw+∞RvvUFU3