Metamath Proof Explorer


Theorem probun

Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion probun PProbAdomPBdomPAB=PAB=PA+PB

Proof

Step Hyp Ref Expression
1 simpll1 PProbAdomPBdomPA=BAB=PProb
2 simplr PProbAdomPBdomPA=BAB=A=B
3 simpr PProbAdomPBdomPA=BAB=AB=
4 disj3 AB=A=AB
5 4 biimpi AB=A=AB
6 difeq1 A=BAB=BB
7 difid BB=
8 6 7 eqtrdi A=BAB=
9 5 8 sylan9eqr A=BAB=A=
10 eqtr2 A=BA=B=
11 9 10 syldan A=BAB=B=
12 9 11 uneq12d A=BAB=AB=
13 unidm =
14 12 13 eqtrdi A=BAB=AB=
15 14 fveq2d A=BAB=PAB=P
16 probnul PProbP=0
17 15 16 sylan9eqr PProbA=BAB=PAB=0
18 9 fveq2d A=BAB=PA=P
19 18 16 sylan9eqr PProbA=BAB=PA=0
20 11 fveq2d A=BAB=PB=P
21 20 16 sylan9eqr PProbA=BAB=PB=0
22 19 21 oveq12d PProbA=BAB=PA+PB=0+0
23 00id 0+0=0
24 22 23 eqtrdi PProbA=BAB=PA+PB=0
25 17 24 eqtr4d PProbA=BAB=PAB=PA+PB
26 1 2 3 25 syl12anc PProbAdomPBdomPA=BAB=PAB=PA+PB
27 26 ex PProbAdomPBdomPA=BAB=PAB=PA+PB
28 3anass PProbAdomPBdomPPProbAdomPBdomP
29 28 anbi1i PProbAdomPBdomPABPProbAdomPBdomPAB
30 df-3an PProbAdomPBdomPABPProbAdomPBdomPAB
31 29 30 bitr4i PProbAdomPBdomPABPProbAdomPBdomPAB
32 simpl1 PProbAdomPBdomPABAB=PProb
33 prssi AdomPBdomPABdomP
34 33 3ad2ant2 PProbAdomPBdomPABABdomP
35 34 adantr PProbAdomPBdomPABAB=ABdomP
36 prex ABV
37 36 elpw AB𝒫domPABdomP
38 35 37 sylibr PProbAdomPBdomPABAB=AB𝒫domP
39 prct AdomPBdomPABω
40 39 3ad2ant2 PProbAdomPBdomPABABω
41 40 adantr PProbAdomPBdomPABAB=ABω
42 simp2l PProbAdomPBdomPABAdomP
43 simp2r PProbAdomPBdomPABBdomP
44 simp3 PProbAdomPBdomPABAB
45 id x=Ax=A
46 id x=Bx=B
47 45 46 disjprg AdomPBdomPABDisjxABxAB=
48 42 43 44 47 syl3anc PProbAdomPBdomPABDisjxABxAB=
49 48 biimpar PProbAdomPBdomPABAB=DisjxABx
50 probcun PProbAB𝒫domPABωDisjxABxPAB=*xABPx
51 32 38 41 49 50 syl112anc PProbAdomPBdomPABAB=PAB=*xABPx
52 uniprg AdomPBdomPAB=AB
53 52 fveq2d AdomPBdomPPAB=PAB
54 53 3ad2ant2 PProbAdomPBdomPABPAB=PAB
55 fveq2 x=APx=PA
56 55 adantl PProbAdomPBdomPABx=APx=PA
57 fveq2 x=BPx=PB
58 57 adantl PProbAdomPBdomPABx=BPx=PB
59 unitssxrge0 010+∞
60 simp1 PProbAdomPBdomPABPProb
61 prob01 PProbAdomPPA01
62 60 42 61 syl2anc PProbAdomPBdomPABPA01
63 59 62 sselid PProbAdomPBdomPABPA0+∞
64 prob01 PProbBdomPPB01
65 60 43 64 syl2anc PProbAdomPBdomPABPB01
66 59 65 sselid PProbAdomPBdomPABPB0+∞
67 56 58 42 43 63 66 44 esumpr PProbAdomPBdomPAB*xABPx=PA+𝑒PB
68 54 67 eqeq12d PProbAdomPBdomPABPAB=*xABPxPAB=PA+𝑒PB
69 68 adantr PProbAdomPBdomPABAB=PAB=*xABPxPAB=PA+𝑒PB
70 51 69 mpbid PProbAdomPBdomPABAB=PAB=PA+𝑒PB
71 31 70 sylanb PProbAdomPBdomPABAB=PAB=PA+𝑒PB
72 unitssre 01
73 simpll1 PProbAdomPBdomPABAB=PProb
74 simpll2 PProbAdomPBdomPABAB=AdomP
75 73 74 61 syl2anc PProbAdomPBdomPABAB=PA01
76 72 75 sselid PProbAdomPBdomPABAB=PA
77 simpll3 PProbAdomPBdomPABAB=BdomP
78 73 77 64 syl2anc PProbAdomPBdomPABAB=PB01
79 72 78 sselid PProbAdomPBdomPABAB=PB
80 rexadd PAPBPA+𝑒PB=PA+PB
81 76 79 80 syl2anc PProbAdomPBdomPABAB=PA+𝑒PB=PA+PB
82 71 81 eqtrd PProbAdomPBdomPABAB=PAB=PA+PB
83 82 ex PProbAdomPBdomPABAB=PAB=PA+PB
84 27 83 pm2.61dane PProbAdomPBdomPAB=PAB=PA+PB