Step |
Hyp |
Ref |
Expression |
1 |
|
simpll1 |
|
2 |
|
simplr |
|
3 |
|
simpr |
|
4 |
|
disj3 |
|
5 |
4
|
biimpi |
|
6 |
|
difeq1 |
|
7 |
|
difid |
|
8 |
6 7
|
eqtrdi |
|
9 |
5 8
|
sylan9eqr |
|
10 |
|
eqtr2 |
|
11 |
9 10
|
syldan |
|
12 |
9 11
|
uneq12d |
|
13 |
|
unidm |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
fveq2d |
|
16 |
|
probnul |
|
17 |
15 16
|
sylan9eqr |
|
18 |
9
|
fveq2d |
|
19 |
18 16
|
sylan9eqr |
|
20 |
11
|
fveq2d |
|
21 |
20 16
|
sylan9eqr |
|
22 |
19 21
|
oveq12d |
|
23 |
|
00id |
|
24 |
22 23
|
eqtrdi |
|
25 |
17 24
|
eqtr4d |
|
26 |
1 2 3 25
|
syl12anc |
|
27 |
26
|
ex |
|
28 |
|
3anass |
|
29 |
28
|
anbi1i |
|
30 |
|
df-3an |
|
31 |
29 30
|
bitr4i |
|
32 |
|
simpl1 |
|
33 |
|
prssi |
|
34 |
33
|
3ad2ant2 |
|
35 |
34
|
adantr |
|
36 |
|
prex |
|
37 |
36
|
elpw |
|
38 |
35 37
|
sylibr |
|
39 |
|
prct |
|
40 |
39
|
3ad2ant2 |
|
41 |
40
|
adantr |
|
42 |
|
simp2l |
|
43 |
|
simp2r |
|
44 |
|
simp3 |
|
45 |
|
id |
|
46 |
|
id |
|
47 |
45 46
|
disjprg |
|
48 |
42 43 44 47
|
syl3anc |
|
49 |
48
|
biimpar |
|
50 |
|
probcun |
|
51 |
32 38 41 49 50
|
syl112anc |
|
52 |
|
uniprg |
|
53 |
52
|
fveq2d |
|
54 |
53
|
3ad2ant2 |
|
55 |
|
fveq2 |
|
56 |
55
|
adantl |
|
57 |
|
fveq2 |
|
58 |
57
|
adantl |
|
59 |
|
unitssxrge0 |
|
60 |
|
simp1 |
|
61 |
|
prob01 |
|
62 |
60 42 61
|
syl2anc |
|
63 |
59 62
|
sselid |
|
64 |
|
prob01 |
|
65 |
60 43 64
|
syl2anc |
|
66 |
59 65
|
sselid |
|
67 |
56 58 42 43 63 66 44
|
esumpr |
|
68 |
54 67
|
eqeq12d |
|
69 |
68
|
adantr |
|
70 |
51 69
|
mpbid |
|
71 |
31 70
|
sylanb |
|
72 |
|
unitssre |
|
73 |
|
simpll1 |
|
74 |
|
simpll2 |
|
75 |
73 74 61
|
syl2anc |
|
76 |
72 75
|
sselid |
|
77 |
|
simpll3 |
|
78 |
73 77 64
|
syl2anc |
|
79 |
72 78
|
sselid |
|
80 |
|
rexadd |
|
81 |
76 79 80
|
syl2anc |
|
82 |
71 81
|
eqtrd |
|
83 |
82
|
ex |
|
84 |
27 83
|
pm2.61dane |
|