Metamath Proof Explorer


Theorem probun

Description: The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion probun P Prob A dom P B dom P A B = P A B = P A + P B

Proof

Step Hyp Ref Expression
1 simpll1 P Prob A dom P B dom P A = B A B = P Prob
2 simplr P Prob A dom P B dom P A = B A B = A = B
3 simpr P Prob A dom P B dom P A = B A B = A B =
4 disj3 A B = A = A B
5 4 biimpi A B = A = A B
6 difeq1 A = B A B = B B
7 difid B B =
8 6 7 eqtrdi A = B A B =
9 5 8 sylan9eqr A = B A B = A =
10 eqtr2 A = B A = B =
11 9 10 syldan A = B A B = B =
12 9 11 uneq12d A = B A B = A B =
13 unidm =
14 12 13 eqtrdi A = B A B = A B =
15 14 fveq2d A = B A B = P A B = P
16 probnul P Prob P = 0
17 15 16 sylan9eqr P Prob A = B A B = P A B = 0
18 9 fveq2d A = B A B = P A = P
19 18 16 sylan9eqr P Prob A = B A B = P A = 0
20 11 fveq2d A = B A B = P B = P
21 20 16 sylan9eqr P Prob A = B A B = P B = 0
22 19 21 oveq12d P Prob A = B A B = P A + P B = 0 + 0
23 00id 0 + 0 = 0
24 22 23 eqtrdi P Prob A = B A B = P A + P B = 0
25 17 24 eqtr4d P Prob A = B A B = P A B = P A + P B
26 1 2 3 25 syl12anc P Prob A dom P B dom P A = B A B = P A B = P A + P B
27 26 ex P Prob A dom P B dom P A = B A B = P A B = P A + P B
28 3anass P Prob A dom P B dom P P Prob A dom P B dom P
29 28 anbi1i P Prob A dom P B dom P A B P Prob A dom P B dom P A B
30 df-3an P Prob A dom P B dom P A B P Prob A dom P B dom P A B
31 29 30 bitr4i P Prob A dom P B dom P A B P Prob A dom P B dom P A B
32 simpl1 P Prob A dom P B dom P A B A B = P Prob
33 prssi A dom P B dom P A B dom P
34 33 3ad2ant2 P Prob A dom P B dom P A B A B dom P
35 34 adantr P Prob A dom P B dom P A B A B = A B dom P
36 prex A B V
37 36 elpw A B 𝒫 dom P A B dom P
38 35 37 sylibr P Prob A dom P B dom P A B A B = A B 𝒫 dom P
39 prct A dom P B dom P A B ω
40 39 3ad2ant2 P Prob A dom P B dom P A B A B ω
41 40 adantr P Prob A dom P B dom P A B A B = A B ω
42 simp2l P Prob A dom P B dom P A B A dom P
43 simp2r P Prob A dom P B dom P A B B dom P
44 simp3 P Prob A dom P B dom P A B A B
45 id x = A x = A
46 id x = B x = B
47 45 46 disjprg A dom P B dom P A B Disj x A B x A B =
48 42 43 44 47 syl3anc P Prob A dom P B dom P A B Disj x A B x A B =
49 48 biimpar P Prob A dom P B dom P A B A B = Disj x A B x
50 probcun P Prob A B 𝒫 dom P A B ω Disj x A B x P A B = * x A B P x
51 32 38 41 49 50 syl112anc P Prob A dom P B dom P A B A B = P A B = * x A B P x
52 uniprg A dom P B dom P A B = A B
53 52 fveq2d A dom P B dom P P A B = P A B
54 53 3ad2ant2 P Prob A dom P B dom P A B P A B = P A B
55 fveq2 x = A P x = P A
56 55 adantl P Prob A dom P B dom P A B x = A P x = P A
57 fveq2 x = B P x = P B
58 57 adantl P Prob A dom P B dom P A B x = B P x = P B
59 unitssxrge0 0 1 0 +∞
60 simp1 P Prob A dom P B dom P A B P Prob
61 prob01 P Prob A dom P P A 0 1
62 60 42 61 syl2anc P Prob A dom P B dom P A B P A 0 1
63 59 62 sselid P Prob A dom P B dom P A B P A 0 +∞
64 prob01 P Prob B dom P P B 0 1
65 60 43 64 syl2anc P Prob A dom P B dom P A B P B 0 1
66 59 65 sselid P Prob A dom P B dom P A B P B 0 +∞
67 56 58 42 43 63 66 44 esumpr P Prob A dom P B dom P A B * x A B P x = P A + 𝑒 P B
68 54 67 eqeq12d P Prob A dom P B dom P A B P A B = * x A B P x P A B = P A + 𝑒 P B
69 68 adantr P Prob A dom P B dom P A B A B = P A B = * x A B P x P A B = P A + 𝑒 P B
70 51 69 mpbid P Prob A dom P B dom P A B A B = P A B = P A + 𝑒 P B
71 31 70 sylanb P Prob A dom P B dom P A B A B = P A B = P A + 𝑒 P B
72 unitssre 0 1
73 simpll1 P Prob A dom P B dom P A B A B = P Prob
74 simpll2 P Prob A dom P B dom P A B A B = A dom P
75 73 74 61 syl2anc P Prob A dom P B dom P A B A B = P A 0 1
76 72 75 sselid P Prob A dom P B dom P A B A B = P A
77 simpll3 P Prob A dom P B dom P A B A B = B dom P
78 73 77 64 syl2anc P Prob A dom P B dom P A B A B = P B 0 1
79 72 78 sselid P Prob A dom P B dom P A B A B = P B
80 rexadd P A P B P A + 𝑒 P B = P A + P B
81 76 79 80 syl2anc P Prob A dom P B dom P A B A B = P A + 𝑒 P B = P A + P B
82 71 81 eqtrd P Prob A dom P B dom P A B A B = P A B = P A + P B
83 82 ex P Prob A dom P B dom P A B A B = P A B = P A + P B
84 27 83 pm2.61dane P Prob A dom P B dom P A B = P A B = P A + P B