| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodss.1 |
|
| 2 |
|
prodss.2 |
|
| 3 |
|
prodss.3 |
|
| 4 |
|
prodss.4 |
|
| 5 |
|
prodss.5 |
|
| 6 |
|
eqid |
|
| 7 |
|
simpr |
|
| 8 |
3
|
adantr |
|
| 9 |
1 5
|
sstrd |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
|
iftrue |
|
| 13 |
12
|
adantl |
|
| 14 |
2
|
ex |
|
| 15 |
14
|
adantr |
|
| 16 |
|
eldif |
|
| 17 |
|
ax-1cn |
|
| 18 |
4 17
|
eqeltrdi |
|
| 19 |
16 18
|
sylan2br |
|
| 20 |
19
|
expr |
|
| 21 |
15 20
|
pm2.61d |
|
| 22 |
21
|
ralrimiva |
|
| 23 |
|
nfcsb1v |
|
| 24 |
23
|
nfel1 |
|
| 25 |
|
csbeq1a |
|
| 26 |
25
|
eleq1d |
|
| 27 |
24 26
|
rspc |
|
| 28 |
22 27
|
mpan9 |
|
| 29 |
13 28
|
eqeltrd |
|
| 30 |
|
iffalse |
|
| 31 |
30 17
|
eqeltrdi |
|
| 32 |
31
|
adantl |
|
| 33 |
29 32
|
pm2.61dan |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfv |
|
| 38 |
|
nfcv |
|
| 39 |
37 23 38
|
nfif |
|
| 40 |
|
eleq1w |
|
| 41 |
40 25
|
ifbieq1d |
|
| 42 |
|
eqid |
|
| 43 |
36 39 41 42
|
fvmptf |
|
| 44 |
11 35 43
|
syl2anc |
|
| 45 |
|
iftrue |
|
| 46 |
45
|
adantl |
|
| 47 |
|
simpr |
|
| 48 |
1
|
adantr |
|
| 49 |
48
|
sselda |
|
| 50 |
28
|
adantlr |
|
| 51 |
49 50
|
syldan |
|
| 52 |
|
eqid |
|
| 53 |
52
|
fvmpts |
|
| 54 |
47 51 53
|
syl2anc |
|
| 55 |
46 54
|
eqtrd |
|
| 56 |
55
|
ex |
|
| 57 |
56
|
adantr |
|
| 58 |
|
iffalse |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
adantl |
|
| 61 |
|
eldif |
|
| 62 |
4
|
ralrimiva |
|
| 63 |
62
|
adantr |
|
| 64 |
23
|
nfeq1 |
|
| 65 |
25
|
eqeq1d |
|
| 66 |
64 65
|
rspc |
|
| 67 |
63 66
|
mpan9 |
|
| 68 |
61 67
|
sylan2br |
|
| 69 |
60 68
|
eqtr4d |
|
| 70 |
69
|
expr |
|
| 71 |
57 70
|
pm2.61d |
|
| 72 |
12
|
adantl |
|
| 73 |
71 72
|
eqtr4d |
|
| 74 |
48
|
ssneld |
|
| 75 |
74
|
imp |
|
| 76 |
75 58
|
syl |
|
| 77 |
30
|
adantl |
|
| 78 |
76 77
|
eqtr4d |
|
| 79 |
73 78
|
pm2.61dan |
|
| 80 |
79
|
adantr |
|
| 81 |
44 80
|
eqtr4d |
|
| 82 |
2
|
fmpttd |
|
| 83 |
82
|
adantr |
|
| 84 |
83
|
ffvelcdmda |
|
| 85 |
6 7 8 10 81 84
|
zprod |
|
| 86 |
5
|
adantr |
|
| 87 |
43
|
ancoms |
|
| 88 |
34 87
|
sylan |
|
| 89 |
|
simpr |
|
| 90 |
|
eqid |
|
| 91 |
90
|
fvmpts |
|
| 92 |
89 50 91
|
syl2anc |
|
| 93 |
92
|
ifeq1d |
|
| 94 |
93
|
adantlr |
|
| 95 |
|
iffalse |
|
| 96 |
95 30
|
eqtr4d |
|
| 97 |
96
|
adantl |
|
| 98 |
94 97
|
pm2.61dan |
|
| 99 |
88 98
|
eqtr4d |
|
| 100 |
21
|
fmpttd |
|
| 101 |
100
|
adantr |
|
| 102 |
101
|
ffvelcdmda |
|
| 103 |
6 7 8 86 99 102
|
zprod |
|
| 104 |
85 103
|
eqtr4d |
|
| 105 |
|
prodfc |
|
| 106 |
|
prodfc |
|
| 107 |
104 105 106
|
3eqtr3g |
|
| 108 |
1
|
adantr |
|
| 109 |
5
|
adantr |
|
| 110 |
|
uzf |
|
| 111 |
110
|
fdmi |
|
| 112 |
111
|
eleq2i |
|
| 113 |
|
ndmfv |
|
| 114 |
112 113
|
sylnbir |
|
| 115 |
114
|
adantl |
|
| 116 |
109 115
|
sseqtrd |
|
| 117 |
108 116
|
sstrd |
|
| 118 |
|
ss0 |
|
| 119 |
117 118
|
syl |
|
| 120 |
|
ss0 |
|
| 121 |
116 120
|
syl |
|
| 122 |
119 121
|
eqtr4d |
|
| 123 |
122
|
prodeq1d |
|
| 124 |
107 123
|
pm2.61dan |
|