Metamath Proof Explorer


Theorem psrdir

Description: Distributive law for the ring of power series (right-distributivity). (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psrass.d D=f0I|f-1Fin
psrass.t ×˙=S
psrass.b B=BaseS
psrass.x φXB
psrass.y φYB
psrass.z φZB
psrdi.a +˙=+S
Assertion psrdir φX+˙Y×˙Z=X×˙Z+˙Y×˙Z

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psrass.d D=f0I|f-1Fin
5 psrass.t ×˙=S
6 psrass.b B=BaseS
7 psrass.x φXB
8 psrass.y φYB
9 psrass.z φZB
10 psrdi.a +˙=+S
11 eqid +R=+R
12 1 6 11 10 7 8 psradd φX+˙Y=X+RfY
13 12 fveq1d φX+˙Yx=X+RfYx
14 13 ad2antrr φkDxyD|yfkX+˙Yx=X+RfYx
15 ssrab2 yD|yfkD
16 simpr φkDxyD|yfkxyD|yfk
17 15 16 sselid φkDxyD|yfkxD
18 eqid BaseR=BaseR
19 1 18 4 6 7 psrelbas φX:DBaseR
20 19 ad2antrr φkDxyD|yfkX:DBaseR
21 20 ffnd φkDxyD|yfkXFnD
22 1 18 4 6 8 psrelbas φY:DBaseR
23 22 ad2antrr φkDxyD|yfkY:DBaseR
24 23 ffnd φkDxyD|yfkYFnD
25 ovex 0IV
26 4 25 rabex2 DV
27 26 a1i φkDxyD|yfkDV
28 inidm DD=D
29 eqidd φkDxyD|yfkxDXx=Xx
30 eqidd φkDxyD|yfkxDYx=Yx
31 21 24 27 27 28 29 30 ofval φkDxyD|yfkxDX+RfYx=Xx+RYx
32 17 31 mpdan φkDxyD|yfkX+RfYx=Xx+RYx
33 14 32 eqtrd φkDxyD|yfkX+˙Yx=Xx+RYx
34 33 oveq1d φkDxyD|yfkX+˙YxRZkfx=Xx+RYxRZkfx
35 3 ad2antrr φkDxyD|yfkRRing
36 20 17 ffvelcdmd φkDxyD|yfkXxBaseR
37 23 17 ffvelcdmd φkDxyD|yfkYxBaseR
38 1 18 4 6 9 psrelbas φZ:DBaseR
39 38 ad2antrr φkDxyD|yfkZ:DBaseR
40 simplr φkDxyD|yfkkD
41 eqid yD|yfk=yD|yfk
42 4 41 psrbagconcl kDxyD|yfkkfxyD|yfk
43 40 16 42 syl2anc φkDxyD|yfkkfxyD|yfk
44 15 43 sselid φkDxyD|yfkkfxD
45 39 44 ffvelcdmd φkDxyD|yfkZkfxBaseR
46 eqid R=R
47 18 11 46 ringdir RRingXxBaseRYxBaseRZkfxBaseRXx+RYxRZkfx=XxRZkfx+RYxRZkfx
48 35 36 37 45 47 syl13anc φkDxyD|yfkXx+RYxRZkfx=XxRZkfx+RYxRZkfx
49 34 48 eqtrd φkDxyD|yfkX+˙YxRZkfx=XxRZkfx+RYxRZkfx
50 49 mpteq2dva φkDxyD|yfkX+˙YxRZkfx=xyD|yfkXxRZkfx+RYxRZkfx
51 4 psrbaglefi kDyD|yfkFin
52 51 adantl φkDyD|yfkFin
53 18 46 ringcl RRingXxBaseRZkfxBaseRXxRZkfxBaseR
54 35 36 45 53 syl3anc φkDxyD|yfkXxRZkfxBaseR
55 18 46 ringcl RRingYxBaseRZkfxBaseRYxRZkfxBaseR
56 35 37 45 55 syl3anc φkDxyD|yfkYxRZkfxBaseR
57 eqidd φkDxyD|yfkXxRZkfx=xyD|yfkXxRZkfx
58 eqidd φkDxyD|yfkYxRZkfx=xyD|yfkYxRZkfx
59 52 54 56 57 58 offval2 φkDxyD|yfkXxRZkfx+RfxyD|yfkYxRZkfx=xyD|yfkXxRZkfx+RYxRZkfx
60 50 59 eqtr4d φkDxyD|yfkX+˙YxRZkfx=xyD|yfkXxRZkfx+RfxyD|yfkYxRZkfx
61 60 oveq2d φkDRxyD|yfkX+˙YxRZkfx=RxyD|yfkXxRZkfx+RfxyD|yfkYxRZkfx
62 3 adantr φkDRRing
63 ringcmn RRingRCMnd
64 62 63 syl φkDRCMnd
65 eqid xyD|yfkXxRZkfx=xyD|yfkXxRZkfx
66 eqid xyD|yfkYxRZkfx=xyD|yfkYxRZkfx
67 18 11 64 52 54 56 65 66 gsummptfidmadd2 φkDRxyD|yfkXxRZkfx+RfxyD|yfkYxRZkfx=RxyD|yfkXxRZkfx+RRxyD|yfkYxRZkfx
68 61 67 eqtrd φkDRxyD|yfkX+˙YxRZkfx=RxyD|yfkXxRZkfx+RRxyD|yfkYxRZkfx
69 68 mpteq2dva φkDRxyD|yfkX+˙YxRZkfx=kDRxyD|yfkXxRZkfx+RRxyD|yfkYxRZkfx
70 ringgrp RRingRGrp
71 3 70 syl φRGrp
72 1 6 10 71 7 8 psraddcl φX+˙YB
73 1 6 46 5 4 72 9 psrmulfval φX+˙Y×˙Z=kDRxyD|yfkX+˙YxRZkfx
74 1 6 5 3 7 9 psrmulcl φX×˙ZB
75 1 6 5 3 8 9 psrmulcl φY×˙ZB
76 1 6 11 10 74 75 psradd φX×˙Z+˙Y×˙Z=X×˙Z+RfY×˙Z
77 26 a1i φDV
78 ovexd φkDRxyD|yfkXxRZkfxV
79 ovexd φkDRxyD|yfkYxRZkfxV
80 1 6 46 5 4 7 9 psrmulfval φX×˙Z=kDRxyD|yfkXxRZkfx
81 1 6 46 5 4 8 9 psrmulfval φY×˙Z=kDRxyD|yfkYxRZkfx
82 77 78 79 80 81 offval2 φX×˙Z+RfY×˙Z=kDRxyD|yfkXxRZkfx+RRxyD|yfkYxRZkfx
83 76 82 eqtrd φX×˙Z+˙Y×˙Z=kDRxyD|yfkXxRZkfx+RRxyD|yfkYxRZkfx
84 69 73 83 3eqtr4d φX+˙Y×˙Z=X×˙Z+˙Y×˙Z