Metamath Proof Explorer


Theorem ptcmpfi

Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion ptcmpfi AFinF:AComp𝑡FComp

Proof

Step Hyp Ref Expression
1 ffn F:ACompFFnA
2 fnresdm FFnAFA=F
3 1 2 syl F:ACompFA=F
4 3 adantl AFinF:ACompFA=F
5 4 fveq2d AFinF:AComp𝑡FA=𝑡F
6 ssid AA
7 sseq1 x=xAA
8 reseq2 x=Fx=F
9 res0 F=
10 8 9 eqtrdi x=Fx=
11 10 fveq2d x=𝑡Fx=𝑡
12 11 eleq1d x=𝑡FxComp𝑡Comp
13 12 imbi2d x=AFinF:AComp𝑡FxCompAFinF:AComp𝑡Comp
14 7 13 imbi12d x=xAAFinF:AComp𝑡FxCompAAFinF:AComp𝑡Comp
15 sseq1 x=yxAyA
16 reseq2 x=yFx=Fy
17 16 fveq2d x=y𝑡Fx=𝑡Fy
18 17 eleq1d x=y𝑡FxComp𝑡FyComp
19 18 imbi2d x=yAFinF:AComp𝑡FxCompAFinF:AComp𝑡FyComp
20 15 19 imbi12d x=yxAAFinF:AComp𝑡FxCompyAAFinF:AComp𝑡FyComp
21 sseq1 x=yzxAyzA
22 reseq2 x=yzFx=Fyz
23 22 fveq2d x=yz𝑡Fx=𝑡Fyz
24 23 eleq1d x=yz𝑡FxComp𝑡FyzComp
25 24 imbi2d x=yzAFinF:AComp𝑡FxCompAFinF:AComp𝑡FyzComp
26 21 25 imbi12d x=yzxAAFinF:AComp𝑡FxCompyzAAFinF:AComp𝑡FyzComp
27 sseq1 x=AxAAA
28 reseq2 x=AFx=FA
29 28 fveq2d x=A𝑡Fx=𝑡FA
30 29 eleq1d x=A𝑡FxComp𝑡FAComp
31 30 imbi2d x=AAFinF:AComp𝑡FxCompAFinF:AComp𝑡FAComp
32 27 31 imbi12d x=AxAAFinF:AComp𝑡FxCompAAAFinF:AComp𝑡FAComp
33 0ex V
34 f0 :Top
35 pttop V:Top𝑡Top
36 33 34 35 mp2an 𝑡Top
37 eqid 𝑡=𝑡
38 37 ptuni V:Topxx=𝑡
39 33 34 38 mp2an xx=𝑡
40 ixp0x xx=
41 snfi Fin
42 40 41 eqeltri xxFin
43 39 42 eqeltrri 𝑡Fin
44 pwfi 𝑡Fin𝒫𝑡Fin
45 43 44 mpbi 𝒫𝑡Fin
46 pwuni 𝑡𝒫𝑡
47 ssfi 𝒫𝑡Fin𝑡𝒫𝑡𝑡Fin
48 45 46 47 mp2an 𝑡Fin
49 36 48 elini 𝑡TopFin
50 fincmp 𝑡TopFin𝑡Comp
51 49 50 ax-mp 𝑡Comp
52 51 2a1i AAFinF:AComp𝑡Comp
53 ssun1 yyz
54 id yzAyzA
55 53 54 sstrid yzAyA
56 55 imim1i yAAFinF:AComp𝑡FyCompyzAAFinF:AComp𝑡FyComp
57 eqid 𝑡Fy=𝑡Fy
58 eqid 𝑡Fz=𝑡Fz
59 eqid 𝑡Fyz=𝑡Fyz
60 resabs1 yyzFyzy=Fy
61 53 60 ax-mp Fyzy=Fy
62 61 eqcomi Fy=Fyzy
63 62 fveq2i 𝑡Fy=𝑡Fyzy
64 ssun2 zyz
65 resabs1 zyzFyzz=Fz
66 64 65 ax-mp Fyzz=Fz
67 66 eqcomi Fz=Fyzz
68 67 fveq2i 𝑡Fz=𝑡Fyzz
69 eqid u𝑡Fy,v𝑡Fzuv=u𝑡Fy,v𝑡Fzuv
70 vex yV
71 vsnex zV
72 70 71 unex yzV
73 72 a1i AFinF:AComp¬zyyzAyzV
74 simplr AFinF:AComp¬zyyzAF:AComp
75 cmptop xCompxTop
76 75 ssriv CompTop
77 fss F:ACompCompTopF:ATop
78 74 76 77 sylancl AFinF:AComp¬zyyzAF:ATop
79 simprr AFinF:AComp¬zyyzAyzA
80 78 79 fssresd AFinF:AComp¬zyyzAFyz:yzTop
81 eqidd AFinF:AComp¬zyyzAyz=yz
82 simprl AFinF:AComp¬zyyzA¬zy
83 disjsn yz=¬zy
84 82 83 sylibr AFinF:AComp¬zyyzAyz=
85 57 58 59 63 68 69 73 80 81 84 ptunhmeo AFinF:AComp¬zyyzAu𝑡Fy,v𝑡Fzuv𝑡Fy×t𝑡FzHomeo𝑡Fyz
86 hmphi u𝑡Fy,v𝑡Fzuv𝑡Fy×t𝑡FzHomeo𝑡Fyz𝑡Fy×t𝑡Fz𝑡Fyz
87 85 86 syl AFinF:AComp¬zyyzA𝑡Fy×t𝑡Fz𝑡Fyz
88 1 ad2antlr AFinF:AComp¬zyyzAFFnA
89 64 79 sstrid AFinF:AComp¬zyyzAzA
90 vex zV
91 90 snss zAzA
92 89 91 sylibr AFinF:AComp¬zyyzAzA
93 fnressn FFnAzAFz=zFz
94 88 92 93 syl2anc AFinF:AComp¬zyyzAFz=zFz
95 94 fveq2d AFinF:AComp¬zyyzA𝑡Fz=𝑡zFz
96 eqid 𝑡zFz=𝑡zFz
97 90 a1i AFinF:AComp¬zyyzAzV
98 74 92 ffvelcdmd AFinF:AComp¬zyyzAFzComp
99 76 98 sselid AFinF:AComp¬zyyzAFzTop
100 toptopon2 FzTopFzTopOnFz
101 99 100 sylib AFinF:AComp¬zyyzAFzTopOnFz
102 96 97 101 pt1hmeo AFinF:AComp¬zyyzAxFzzxFzHomeo𝑡zFz
103 hmphi xFzzxFzHomeo𝑡zFzFz𝑡zFz
104 102 103 syl AFinF:AComp¬zyyzAFz𝑡zFz
105 cmphmph Fz𝑡zFzFzComp𝑡zFzComp
106 104 98 105 sylc AFinF:AComp¬zyyzA𝑡zFzComp
107 95 106 eqeltrd AFinF:AComp¬zyyzA𝑡FzComp
108 txcmp 𝑡FyComp𝑡FzComp𝑡Fy×t𝑡FzComp
109 108 expcom 𝑡FzComp𝑡FyComp𝑡Fy×t𝑡FzComp
110 107 109 syl AFinF:AComp¬zyyzA𝑡FyComp𝑡Fy×t𝑡FzComp
111 cmphmph 𝑡Fy×t𝑡Fz𝑡Fyz𝑡Fy×t𝑡FzComp𝑡FyzComp
112 87 110 111 sylsyld AFinF:AComp¬zyyzA𝑡FyComp𝑡FyzComp
113 112 expcom ¬zyyzAAFinF:AComp𝑡FyComp𝑡FyzComp
114 113 a2d ¬zyyzAAFinF:AComp𝑡FyCompAFinF:AComp𝑡FyzComp
115 114 ex ¬zyyzAAFinF:AComp𝑡FyCompAFinF:AComp𝑡FyzComp
116 115 a2d ¬zyyzAAFinF:AComp𝑡FyCompyzAAFinF:AComp𝑡FyzComp
117 56 116 syl5 ¬zyyAAFinF:AComp𝑡FyCompyzAAFinF:AComp𝑡FyzComp
118 117 adantl yFin¬zyyAAFinF:AComp𝑡FyCompyzAAFinF:AComp𝑡FyzComp
119 14 20 26 32 52 118 findcard2s AFinAAAFinF:AComp𝑡FAComp
120 6 119 mpi AFinAFinF:AComp𝑡FAComp
121 120 anabsi5 AFinF:AComp𝑡FAComp
122 5 121 eqeltrrd AFinF:AComp𝑡FComp