Metamath Proof Explorer


Theorem pwdif

Description: The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq . See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number , 5-Aug-2021. (Contributed by AV, 6-Aug-2021) (Revised by AV, 19-Aug-2021)

Ref Expression
Assertion pwdif N0ABANBN=ABk0..^NAkBN-k-1

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 simp2 NABA
3 simp3 NABB
4 fzofi 0..^NFin
5 4 a1i NAB0..^NFin
6 2 adantr NABk0..^NA
7 elfzonn0 k0..^Nk0
8 7 adantl NABk0..^Nk0
9 6 8 expcld NABk0..^NAk
10 3 adantr NABk0..^NB
11 ubmelm1fzo k0..^NN-k-10..^N
12 elfzonn0 N-k-10..^NN-k-10
13 11 12 syl k0..^NN-k-10
14 13 adantl NABk0..^NN-k-10
15 10 14 expcld NABk0..^NBN-k-1
16 9 15 mulcld NABk0..^NAkBN-k-1
17 5 16 fsumcl NABk0..^NAkBN-k-1
18 2 3 17 subdird NABABk0..^NAkBN-k-1=Ak0..^NAkBN-k-1Bk0..^NAkBN-k-1
19 5 2 16 fsummulc2 NABAk0..^NAkBN-k-1=k0..^NAAkBN-k-1
20 6 9 15 mulassd NABk0..^NAAkBN-k-1=AAkBN-k-1
21 6 9 mulcomd NABk0..^NAAk=AkA
22 expp1 Ak0Ak+1=AkA
23 2 7 22 syl2an NABk0..^NAk+1=AkA
24 21 23 eqtr4d NABk0..^NAAk=Ak+1
25 24 oveq1d NABk0..^NAAkBN-k-1=Ak+1BN-k-1
26 20 25 eqtr3d NABk0..^NAAkBN-k-1=Ak+1BN-k-1
27 26 sumeq2dv NABk0..^NAAkBN-k-1=k0..^NAk+1BN-k-1
28 19 27 eqtrd NABAk0..^NAkBN-k-1=k0..^NAk+1BN-k-1
29 5 3 16 fsummulc2 NABBk0..^NAkBN-k-1=k0..^NBAkBN-k-1
30 10 16 mulcomd NABk0..^NBAkBN-k-1=AkBN-k-1B
31 9 15 10 mulassd NABk0..^NAkBN-k-1B=AkBN-k-1B
32 expp1 BN-k-10BNk-1+1=BN-k-1B
33 32 eqcomd BN-k-10BN-k-1B=BNk-1+1
34 3 13 33 syl2an NABk0..^NBN-k-1B=BNk-1+1
35 nncn NN
36 35 3ad2ant1 NABN
37 36 adantr NABk0..^NN
38 elfzoelz k0..^Nk
39 38 zcnd k0..^Nk
40 39 adantl NABk0..^Nk
41 37 40 subcld NABk0..^NNk
42 npcan1 NkNk-1+1=Nk
43 42 oveq2d NkBNk-1+1=BNk
44 41 43 syl NABk0..^NBNk-1+1=BNk
45 34 44 eqtrd NABk0..^NBN-k-1B=BNk
46 45 oveq2d NABk0..^NAkBN-k-1B=AkBNk
47 30 31 46 3eqtrd NABk0..^NBAkBN-k-1=AkBNk
48 47 sumeq2dv NABk0..^NBAkBN-k-1=k0..^NAkBNk
49 29 48 eqtrd NABBk0..^NAkBN-k-1=k0..^NAkBNk
50 28 49 oveq12d NABAk0..^NAkBN-k-1Bk0..^NAkBN-k-1=k0..^NAk+1BN-k-1k0..^NAkBNk
51 nnz NN
52 51 3ad2ant1 NABN
53 fzoval N0..^N=0N1
54 52 53 syl NAB0..^N=0N1
55 54 sumeq1d NABk0..^NAk+1BN-k-1=k=0N1Ak+1BN-k-1
56 nnm1nn0 NN10
57 nn0uz 0=0
58 56 57 eleqtrdi NN10
59 58 3ad2ant1 NABN10
60 2 adantr NABk0N1A
61 elfznn0 k0N1k0
62 peano2nn0 k0k+10
63 61 62 syl k0N1k+10
64 63 adantl NABk0N1k+10
65 60 64 expcld NABk0N1Ak+1
66 3 adantr NABk0N1B
67 36 adantr NABk0N1N
68 61 nn0cnd k0N1k
69 68 adantl NABk0N1k
70 1cnd NABk0N11
71 67 69 70 sub32d NABk0N1N-k-1=N-1-k
72 fznn0sub k0N1N-1-k0
73 72 adantl NABk0N1N-1-k0
74 71 73 eqeltrd NABk0N1N-k-10
75 66 74 expcld NABk0N1BN-k-1
76 65 75 mulcld NABk0N1Ak+1BN-k-1
77 oveq1 k=N1k+1=N-1+1
78 77 oveq2d k=N1Ak+1=AN-1+1
79 oveq2 k=N1Nk=NN1
80 79 oveq1d k=N1N-k-1=N-N1-1
81 80 oveq2d k=N1BN-k-1=BN-N1-1
82 78 81 oveq12d k=N1Ak+1BN-k-1=AN-1+1BN-N1-1
83 59 76 82 fsumm1 NABk=0N1Ak+1BN-k-1=k=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1
84 55 83 eqtrd NABk0..^NAk+1BN-k-1=k=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1
85 54 sumeq1d NABk0..^NAkBNk=k=0N1AkBNk
86 61 adantl NABk0N1k0
87 60 86 expcld NABk0N1Ak
88 54 eleq2d NABk0..^Nk0N1
89 fzonnsub k0..^NNk
90 89 nnnn0d k0..^NNk0
91 88 90 syl6bir NABk0N1Nk0
92 91 imp NABk0N1Nk0
93 66 92 expcld NABk0N1BNk
94 87 93 mulcld NABk0N1AkBNk
95 oveq2 k=0Ak=A0
96 oveq2 k=0Nk=N0
97 96 oveq2d k=0BNk=BN0
98 95 97 oveq12d k=0AkBNk=A0BN0
99 59 94 98 fsum1p NABk=0N1AkBNk=A0BN0+k=0+1N1AkBNk
100 2 exp0d NABA0=1
101 36 subid1d NABN0=N
102 101 oveq2d NABBN0=BN
103 100 102 oveq12d NABA0BN0=1BN
104 simp1 NABN
105 104 nnnn0d NABN0
106 3 105 expcld NABBN
107 106 mullidd NAB1BN=BN
108 103 107 eqtrd NABA0BN0=BN
109 0p1e1 0+1=1
110 109 a1i NAB0+1=1
111 110 oveq1d NAB0+1N1=1N1
112 111 sumeq1d NABk=0+1N1AkBNk=k=1N1AkBNk
113 108 112 oveq12d NABA0BN0+k=0+1N1AkBNk=BN+k=1N1AkBNk
114 85 99 113 3eqtrd NABk0..^NAkBNk=BN+k=1N1AkBNk
115 84 114 oveq12d NABk0..^NAk+1BN-k-1k0..^NAkBNk=k=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1-BN+k=1N1AkBNk
116 fzfid NAB1N1Fin
117 2 adantr NABk1N1A
118 elfznn k1N1k
119 118 nnnn0d k1N1k0
120 119 adantl NABk1N1k0
121 117 120 expcld NABk1N1Ak
122 3 adantr NABk1N1B
123 fzoval N1..^N=1N1
124 52 123 syl NAB1..^N=1N1
125 124 eleq2d NABk1..^Nk1N1
126 fzonnsub k1..^NNk
127 126 nnnn0d k1..^NNk0
128 125 127 syl6bir NABk1N1Nk0
129 128 imp NABk1N1Nk0
130 122 129 expcld NABk1N1BNk
131 121 130 mulcld NABk1N1AkBNk
132 116 131 fsumcl NABk=1N1AkBNk
133 2 105 expcld NABAN
134 oveq1 k=lk+1=l+1
135 134 oveq2d k=lAk+1=Al+1
136 oveq2 k=lNk=Nl
137 136 oveq1d k=lN-k-1=N-l-1
138 137 oveq2d k=lBN-k-1=BN-l-1
139 135 138 oveq12d k=lAk+1BN-k-1=Al+1BN-l-1
140 139 cbvsumv k=0N-1-1Ak+1BN-k-1=l=0N-1-1Al+1BN-l-1
141 1m1e0 11=0
142 141 eqcomi 0=11
143 142 oveq1i 0N-1-1=11N-1-1
144 143 a1i NAB0N-1-1=11N-1-1
145 36 adantr NABl0N-1-1N
146 elfznn0 l0N-1-1l0
147 146 nn0cnd l0N-1-1l
148 147 adantl NABl0N-1-1l
149 1cnd NABl0N-1-11
150 145 148 149 subsub4d NABl0N-1-1N-l-1=Nl+1
151 150 oveq2d NABl0N-1-1BN-l-1=BNl+1
152 151 oveq2d NABl0N-1-1Al+1BN-l-1=Al+1BNl+1
153 144 152 sumeq12dv NABl=0N-1-1Al+1BN-l-1=l=11N-1-1Al+1BNl+1
154 140 153 eqtrid NABk=0N-1-1Ak+1BN-k-1=l=11N-1-1Al+1BNl+1
155 1zzd NAB1
156 peano2zm NN1
157 52 156 syl NABN1
158 oveq2 k=l+1Ak=Al+1
159 oveq2 k=l+1Nk=Nl+1
160 159 oveq2d k=l+1BNk=BNl+1
161 158 160 oveq12d k=l+1AkBNk=Al+1BNl+1
162 155 155 157 131 161 fsumshftm NABk=1N1AkBNk=l=11N-1-1Al+1BNl+1
163 154 162 eqtr4d NABk=0N-1-1Ak+1BN-k-1=k=1N1AkBNk
164 npcan1 NN-1+1=N
165 36 164 syl NABN-1+1=N
166 165 oveq2d NABAN-1+1=AN
167 peano2cnm NN1
168 35 167 syl NN1
169 1cnd N1
170 35 168 169 sub32d NN-N1-1=N-1-N1
171 168 subidd NN-1-N1=0
172 170 171 eqtrd NN-N1-1=0
173 172 3ad2ant1 NABN-N1-1=0
174 173 oveq2d NABBN-N1-1=B0
175 exp0 BB0=1
176 175 3ad2ant3 NABB0=1
177 174 176 eqtrd NABBN-N1-1=1
178 166 177 oveq12d NABAN-1+1BN-N1-1=AN1
179 133 mulridd NABAN1=AN
180 178 179 eqtrd NABAN-1+1BN-N1-1=AN
181 163 180 oveq12d NABk=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1=k=1N1AkBNk+AN
182 132 133 181 comraddd NABk=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1=AN+k=1N1AkBNk
183 182 oveq1d NABk=0N-1-1Ak+1BN-k-1+AN-1+1BN-N1-1-BN+k=1N1AkBNk=AN+k=1N1AkBNk-BN+k=1N1AkBNk
184 133 106 132 pnpcan2d NABAN+k=1N1AkBNk-BN+k=1N1AkBNk=ANBN
185 115 183 184 3eqtrd NABk0..^NAk+1BN-k-1k0..^NAkBNk=ANBN
186 18 50 185 3eqtrrd NABANBN=ABk0..^NAkBN-k-1
187 186 3exp NABANBN=ABk0..^NAkBN-k-1
188 simp2 N=0ABA
189 simp3 N=0ABB
190 188 189 subcld N=0ABAB
191 190 mul01d N=0ABAB0=0
192 oveq2 N=00..^N=0..^0
193 fzo0 0..^0=
194 192 193 eqtrdi N=00..^N=
195 194 sumeq1d N=0k0..^NAkBN-k-1=kAkBN-k-1
196 195 3ad2ant1 N=0ABk0..^NAkBN-k-1=kAkBN-k-1
197 sum0 kAkBN-k-1=0
198 196 197 eqtrdi N=0ABk0..^NAkBN-k-1=0
199 198 oveq2d N=0ABABk0..^NAkBN-k-1=AB0
200 oveq2 N=0AN=A0
201 200 3ad2ant1 N=0ABAN=A0
202 exp0 AA0=1
203 202 3ad2ant2 N=0ABA0=1
204 201 203 eqtrd N=0ABAN=1
205 oveq2 N=0BN=B0
206 205 3ad2ant1 N=0ABBN=B0
207 175 3ad2ant3 N=0ABB0=1
208 206 207 eqtrd N=0ABBN=1
209 204 208 oveq12d N=0ABANBN=11
210 209 141 eqtrdi N=0ABANBN=0
211 191 199 210 3eqtr4rd N=0ABANBN=ABk0..^NAkBN-k-1
212 211 3exp N=0ABANBN=ABk0..^NAkBN-k-1
213 187 212 jaoi NN=0ABANBN=ABk0..^NAkBN-k-1
214 1 213 sylbi N0ABANBN=ABk0..^NAkBN-k-1
215 214 3imp N0ABANBN=ABk0..^NAkBN-k-1