Metamath Proof Explorer


Theorem ram0

Description: The Ramsey number when R = (/) . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ram0 M0MRamsey=M

Proof

Step Hyp Ref Expression
1 eqid aV,i0b𝒫a|b=i=aV,i0b𝒫a|b=i
2 id M0M0
3 0ex V
4 3 a1i M0V
5 f0 :0
6 5 a1i M0:0
7 f00 f:saV,i0b𝒫a|b=iMf=saV,i0b𝒫a|b=iM=
8 vex sV
9 simpl M0MsM0
10 1 hashbcval sVM0saV,i0b𝒫a|b=iM=x𝒫s|x=M
11 8 9 10 sylancr M0MssaV,i0b𝒫a|b=iM=x𝒫s|x=M
12 hashfz1 M01M=M
13 12 breq1d M01MsMs
14 13 biimpar M0Ms1Ms
15 fzfid M0Ms1MFin
16 hashdom 1MFinsV1Ms1Ms
17 15 8 16 sylancl M0Ms1Ms1Ms
18 14 17 mpbid M0Ms1Ms
19 8 domen 1Msx1Mxxs
20 18 19 sylib M0Msx1Mxxs
21 simprr M0Ms1Mxxsxs
22 velpw x𝒫sxs
23 21 22 sylibr M0Ms1Mxxsx𝒫s
24 hasheni 1Mx1M=x
25 24 ad2antrl M0Ms1Mxxs1M=x
26 12 ad2antrr M0Ms1Mxxs1M=M
27 25 26 eqtr3d M0Ms1Mxxsx=M
28 23 27 jca M0Ms1Mxxsx𝒫sx=M
29 28 ex M0Ms1Mxxsx𝒫sx=M
30 29 eximdv M0Msx1Mxxsxx𝒫sx=M
31 20 30 mpd M0Msxx𝒫sx=M
32 df-rex x𝒫sx=Mxx𝒫sx=M
33 31 32 sylibr M0Msx𝒫sx=M
34 rabn0 x𝒫s|x=Mx𝒫sx=M
35 33 34 sylibr M0Msx𝒫s|x=M
36 11 35 eqnetrd M0MssaV,i0b𝒫a|b=iM
37 36 neneqd M0Ms¬saV,i0b𝒫a|b=iM=
38 37 pm2.21d M0MssaV,i0b𝒫a|b=iM=cx𝒫scxxaV,i0b𝒫a|b=iMf-1c
39 38 adantld M0Msf=saV,i0b𝒫a|b=iM=cx𝒫scxxaV,i0b𝒫a|b=iMf-1c
40 7 39 biimtrid M0Msf:saV,i0b𝒫a|b=iMcx𝒫scxxaV,i0b𝒫a|b=iMf-1c
41 40 impr M0Msf:saV,i0b𝒫a|b=iMcx𝒫scxxaV,i0b𝒫a|b=iMf-1c
42 1 2 4 6 2 41 ramub M0MRamseyM
43 nnnn0 MM0
44 3 a1i MV
45 5 a1i M:0
46 nnm1nn0 MM10
47 f0 :
48 fzfid M1M1Fin
49 1 hashbc2 1M1FinM01M1aV,i0b𝒫a|b=iM=(1M1M)
50 48 43 49 syl2anc M1M1aV,i0b𝒫a|b=iM=(1M1M)
51 hashfz1 M101M1=M1
52 46 51 syl M1M1=M1
53 52 oveq1d M(1M1M)=(M1M)
54 nnz MM
55 nnre MM
56 55 ltm1d MM1<M
57 56 olcd MM<0M1<M
58 bcval4 M10MM<0M1<M(M1M)=0
59 46 54 57 58 syl3anc M(M1M)=0
60 50 53 59 3eqtrd M1M1aV,i0b𝒫a|b=iM=0
61 ovex 1M1aV,i0b𝒫a|b=iMV
62 hasheq0 1M1aV,i0b𝒫a|b=iMV1M1aV,i0b𝒫a|b=iM=01M1aV,i0b𝒫a|b=iM=
63 61 62 ax-mp 1M1aV,i0b𝒫a|b=iM=01M1aV,i0b𝒫a|b=iM=
64 60 63 sylib M1M1aV,i0b𝒫a|b=iM=
65 64 feq2d M:1M1aV,i0b𝒫a|b=iM:
66 47 65 mpbiri M:1M1aV,i0b𝒫a|b=iM
67 noel ¬c
68 67 pm2.21i cxaV,i0b𝒫a|b=iM-1cx<c
69 68 ad2antrl Mcx1M1xaV,i0b𝒫a|b=iM-1cx<c
70 1 43 44 45 46 66 69 ramlb MM1<MRamsey
71 ramubcl M0V:0M0MRamseyMMRamsey0
72 2 4 6 2 42 71 syl32anc M0MRamsey0
73 nn0lem1lt M0MRamsey0MMRamseyM1<MRamsey
74 43 72 73 syl2anc2 MMMRamseyM1<MRamsey
75 70 74 mpbird MMMRamsey
76 75 a1i M0MMMRamsey
77 72 nn0ge0d M00MRamsey
78 breq1 M=0MMRamsey0MRamsey
79 77 78 syl5ibrcom M0M=0MMRamsey
80 elnn0 M0MM=0
81 80 biimpi M0MM=0
82 76 79 81 mpjaod M0MMRamsey
83 72 nn0red M0MRamsey
84 nn0re M0M
85 83 84 letri3d M0MRamsey=MMRamseyMMMRamsey
86 42 82 85 mpbir2and M0MRamsey=M