| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 |  | id |  | 
						
							| 3 |  | 0ex |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 |  | f0 |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | f00 |  | 
						
							| 8 |  | vex |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 | 1 | hashbcval |  | 
						
							| 11 | 8 9 10 | sylancr |  | 
						
							| 12 |  | hashfz1 |  | 
						
							| 13 | 12 | breq1d |  | 
						
							| 14 | 13 | biimpar |  | 
						
							| 15 |  | fzfid |  | 
						
							| 16 |  | hashdom |  | 
						
							| 17 | 15 8 16 | sylancl |  | 
						
							| 18 | 14 17 | mpbid |  | 
						
							| 19 | 8 | domen |  | 
						
							| 20 | 18 19 | sylib |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 |  | velpw |  | 
						
							| 23 | 21 22 | sylibr |  | 
						
							| 24 |  | hasheni |  | 
						
							| 25 | 24 | ad2antrl |  | 
						
							| 26 | 12 | ad2antrr |  | 
						
							| 27 | 25 26 | eqtr3d |  | 
						
							| 28 | 23 27 | jca |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | eximdv |  | 
						
							| 31 | 20 30 | mpd |  | 
						
							| 32 |  | df-rex |  | 
						
							| 33 | 31 32 | sylibr |  | 
						
							| 34 |  | rabn0 |  | 
						
							| 35 | 33 34 | sylibr |  | 
						
							| 36 | 11 35 | eqnetrd |  | 
						
							| 37 | 36 | neneqd |  | 
						
							| 38 | 37 | pm2.21d |  | 
						
							| 39 | 38 | adantld |  | 
						
							| 40 | 7 39 | biimtrid |  | 
						
							| 41 | 40 | impr |  | 
						
							| 42 | 1 2 4 6 2 41 | ramub |  | 
						
							| 43 |  | nnnn0 |  | 
						
							| 44 | 3 | a1i |  | 
						
							| 45 | 5 | a1i |  | 
						
							| 46 |  | nnm1nn0 |  | 
						
							| 47 |  | f0 |  | 
						
							| 48 |  | fzfid |  | 
						
							| 49 | 1 | hashbc2 |  | 
						
							| 50 | 48 43 49 | syl2anc |  | 
						
							| 51 |  | hashfz1 |  | 
						
							| 52 | 46 51 | syl |  | 
						
							| 53 | 52 | oveq1d |  | 
						
							| 54 |  | nnz |  | 
						
							| 55 |  | nnre |  | 
						
							| 56 | 55 | ltm1d |  | 
						
							| 57 | 56 | olcd |  | 
						
							| 58 |  | bcval4 |  | 
						
							| 59 | 46 54 57 58 | syl3anc |  | 
						
							| 60 | 50 53 59 | 3eqtrd |  | 
						
							| 61 |  | ovex |  | 
						
							| 62 |  | hasheq0 |  | 
						
							| 63 | 61 62 | ax-mp |  | 
						
							| 64 | 60 63 | sylib |  | 
						
							| 65 | 64 | feq2d |  | 
						
							| 66 | 47 65 | mpbiri |  | 
						
							| 67 |  | noel |  | 
						
							| 68 | 67 | pm2.21i |  | 
						
							| 69 | 68 | ad2antrl |  | 
						
							| 70 | 1 43 44 45 46 66 69 | ramlb |  | 
						
							| 71 |  | ramubcl |  | 
						
							| 72 | 2 4 6 2 42 71 | syl32anc |  | 
						
							| 73 |  | nn0lem1lt |  | 
						
							| 74 | 43 72 73 | syl2anc2 |  | 
						
							| 75 | 70 74 | mpbird |  | 
						
							| 76 | 75 | a1i |  | 
						
							| 77 | 72 | nn0ge0d |  | 
						
							| 78 |  | breq1 |  | 
						
							| 79 | 77 78 | syl5ibrcom |  | 
						
							| 80 |  | elnn0 |  | 
						
							| 81 | 80 | biimpi |  | 
						
							| 82 | 76 79 81 | mpjaod |  | 
						
							| 83 | 72 | nn0red |  | 
						
							| 84 |  | nn0re |  | 
						
							| 85 | 83 84 | letri3d |  | 
						
							| 86 | 42 82 85 | mpbir2and |  |