Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Ramsey's theorem
ram0
Next ⟩
0ramcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
ram0
Description:
The Ramsey number when
R = (/)
.
(Contributed by
Mario Carneiro
, 22-Apr-2015)
Ref
Expression
Assertion
ram0
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
=
M
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
=
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
2
id
⊢
M
∈
ℕ
0
→
M
∈
ℕ
0
3
0ex
⊢
∅
∈
V
4
3
a1i
⊢
M
∈
ℕ
0
→
∅
∈
V
5
f0
⊢
∅
:
∅
⟶
ℕ
0
6
5
a1i
⊢
M
∈
ℕ
0
→
∅
:
∅
⟶
ℕ
0
7
f00
⊢
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⟶
∅
↔
f
=
∅
∧
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
8
vex
⊢
s
∈
V
9
simpl
⊢
M
∈
ℕ
0
∧
M
≤
s
→
M
∈
ℕ
0
10
1
hashbcval
⊢
s
∈
V
∧
M
∈
ℕ
0
→
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
x
∈
𝒫
s
|
x
=
M
11
8
9
10
sylancr
⊢
M
∈
ℕ
0
∧
M
≤
s
→
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
x
∈
𝒫
s
|
x
=
M
12
hashfz1
⊢
M
∈
ℕ
0
→
1
…
M
=
M
13
12
breq1d
⊢
M
∈
ℕ
0
→
1
…
M
≤
s
↔
M
≤
s
14
13
biimpar
⊢
M
∈
ℕ
0
∧
M
≤
s
→
1
…
M
≤
s
15
fzfid
⊢
M
∈
ℕ
0
∧
M
≤
s
→
1
…
M
∈
Fin
16
hashdom
⊢
1
…
M
∈
Fin
∧
s
∈
V
→
1
…
M
≤
s
↔
1
…
M
≼
s
17
15
8
16
sylancl
⊢
M
∈
ℕ
0
∧
M
≤
s
→
1
…
M
≤
s
↔
1
…
M
≼
s
18
14
17
mpbid
⊢
M
∈
ℕ
0
∧
M
≤
s
→
1
…
M
≼
s
19
8
domen
⊢
1
…
M
≼
s
↔
∃
x
1
…
M
≈
x
∧
x
⊆
s
20
18
19
sylib
⊢
M
∈
ℕ
0
∧
M
≤
s
→
∃
x
1
…
M
≈
x
∧
x
⊆
s
21
simprr
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
x
⊆
s
22
velpw
⊢
x
∈
𝒫
s
↔
x
⊆
s
23
21
22
sylibr
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
x
∈
𝒫
s
24
hasheni
⊢
1
…
M
≈
x
→
1
…
M
=
x
25
24
ad2antrl
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
1
…
M
=
x
26
12
ad2antrr
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
1
…
M
=
M
27
25
26
eqtr3d
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
x
=
M
28
23
27
jca
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
1
…
M
≈
x
∧
x
⊆
s
→
x
∈
𝒫
s
∧
x
=
M
29
28
ex
⊢
M
∈
ℕ
0
∧
M
≤
s
→
1
…
M
≈
x
∧
x
⊆
s
→
x
∈
𝒫
s
∧
x
=
M
30
29
eximdv
⊢
M
∈
ℕ
0
∧
M
≤
s
→
∃
x
1
…
M
≈
x
∧
x
⊆
s
→
∃
x
x
∈
𝒫
s
∧
x
=
M
31
20
30
mpd
⊢
M
∈
ℕ
0
∧
M
≤
s
→
∃
x
x
∈
𝒫
s
∧
x
=
M
32
df-rex
⊢
∃
x
∈
𝒫
s
x
=
M
↔
∃
x
x
∈
𝒫
s
∧
x
=
M
33
31
32
sylibr
⊢
M
∈
ℕ
0
∧
M
≤
s
→
∃
x
∈
𝒫
s
x
=
M
34
rabn0
⊢
x
∈
𝒫
s
|
x
=
M
≠
∅
↔
∃
x
∈
𝒫
s
x
=
M
35
33
34
sylibr
⊢
M
∈
ℕ
0
∧
M
≤
s
→
x
∈
𝒫
s
|
x
=
M
≠
∅
36
11
35
eqnetrd
⊢
M
∈
ℕ
0
∧
M
≤
s
→
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
≠
∅
37
36
neneqd
⊢
M
∈
ℕ
0
∧
M
≤
s
→
¬
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
38
37
pm2.21d
⊢
M
∈
ℕ
0
∧
M
≤
s
→
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
→
∃
c
∈
∅
∃
x
∈
𝒫
s
∅
c
≤
x
∧
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
f
-1
c
39
38
adantld
⊢
M
∈
ℕ
0
∧
M
≤
s
→
f
=
∅
∧
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
→
∃
c
∈
∅
∃
x
∈
𝒫
s
∅
c
≤
x
∧
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
f
-1
c
40
7
39
biimtrid
⊢
M
∈
ℕ
0
∧
M
≤
s
→
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⟶
∅
→
∃
c
∈
∅
∃
x
∈
𝒫
s
∅
c
≤
x
∧
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
f
-1
c
41
40
impr
⊢
M
∈
ℕ
0
∧
M
≤
s
∧
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⟶
∅
→
∃
c
∈
∅
∃
x
∈
𝒫
s
∅
c
≤
x
∧
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
f
-1
c
42
1
2
4
6
2
41
ramub
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
≤
M
43
nnnn0
⊢
M
∈
ℕ
→
M
∈
ℕ
0
44
3
a1i
⊢
M
∈
ℕ
→
∅
∈
V
45
5
a1i
⊢
M
∈
ℕ
→
∅
:
∅
⟶
ℕ
0
46
nnm1nn0
⊢
M
∈
ℕ
→
M
−
1
∈
ℕ
0
47
f0
⊢
∅
:
∅
⟶
∅
48
fzfid
⊢
M
∈
ℕ
→
1
…
M
−
1
∈
Fin
49
1
hashbc2
⊢
1
…
M
−
1
∈
Fin
∧
M
∈
ℕ
0
→
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
(
1
…
M
−
1
M
)
50
48
43
49
syl2anc
⊢
M
∈
ℕ
→
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
(
1
…
M
−
1
M
)
51
hashfz1
⊢
M
−
1
∈
ℕ
0
→
1
…
M
−
1
=
M
−
1
52
46
51
syl
⊢
M
∈
ℕ
→
1
…
M
−
1
=
M
−
1
53
52
oveq1d
⊢
M
∈
ℕ
→
(
1
…
M
−
1
M
)
=
(
M
−
1
M
)
54
nnz
⊢
M
∈
ℕ
→
M
∈
ℤ
55
nnre
⊢
M
∈
ℕ
→
M
∈
ℝ
56
55
ltm1d
⊢
M
∈
ℕ
→
M
−
1
<
M
57
56
olcd
⊢
M
∈
ℕ
→
M
<
0
∨
M
−
1
<
M
58
bcval4
⊢
M
−
1
∈
ℕ
0
∧
M
∈
ℤ
∧
M
<
0
∨
M
−
1
<
M
→
(
M
−
1
M
)
=
0
59
46
54
57
58
syl3anc
⊢
M
∈
ℕ
→
(
M
−
1
M
)
=
0
60
50
53
59
3eqtrd
⊢
M
∈
ℕ
→
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
0
61
ovex
⊢
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
∈
V
62
hasheq0
⊢
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
∈
V
→
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
0
↔
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
63
61
62
ax-mp
⊢
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
0
↔
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
64
60
63
sylib
⊢
M
∈
ℕ
→
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
=
∅
65
64
feq2d
⊢
M
∈
ℕ
→
∅
:
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⟶
∅
↔
∅
:
∅
⟶
∅
66
47
65
mpbiri
⊢
M
∈
ℕ
→
∅
:
1
…
M
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⟶
∅
67
noel
⊢
¬
c
∈
∅
68
67
pm2.21i
⊢
c
∈
∅
→
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
∅
-1
c
→
x
<
∅
c
69
68
ad2antrl
⊢
M
∈
ℕ
∧
c
∈
∅
∧
x
⊆
1
…
M
−
1
→
x
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
M
⊆
∅
-1
c
→
x
<
∅
c
70
1
43
44
45
46
66
69
ramlb
⊢
M
∈
ℕ
→
M
−
1
<
M
Ramsey
∅
71
ramubcl
⊢
M
∈
ℕ
0
∧
∅
∈
V
∧
∅
:
∅
⟶
ℕ
0
∧
M
∈
ℕ
0
∧
M
Ramsey
∅
≤
M
→
M
Ramsey
∅
∈
ℕ
0
72
2
4
6
2
42
71
syl32anc
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
∈
ℕ
0
73
nn0lem1lt
⊢
M
∈
ℕ
0
∧
M
Ramsey
∅
∈
ℕ
0
→
M
≤
M
Ramsey
∅
↔
M
−
1
<
M
Ramsey
∅
74
43
72
73
syl2anc2
⊢
M
∈
ℕ
→
M
≤
M
Ramsey
∅
↔
M
−
1
<
M
Ramsey
∅
75
70
74
mpbird
⊢
M
∈
ℕ
→
M
≤
M
Ramsey
∅
76
75
a1i
⊢
M
∈
ℕ
0
→
M
∈
ℕ
→
M
≤
M
Ramsey
∅
77
72
nn0ge0d
⊢
M
∈
ℕ
0
→
0
≤
M
Ramsey
∅
78
breq1
⊢
M
=
0
→
M
≤
M
Ramsey
∅
↔
0
≤
M
Ramsey
∅
79
77
78
syl5ibrcom
⊢
M
∈
ℕ
0
→
M
=
0
→
M
≤
M
Ramsey
∅
80
elnn0
⊢
M
∈
ℕ
0
↔
M
∈
ℕ
∨
M
=
0
81
80
biimpi
⊢
M
∈
ℕ
0
→
M
∈
ℕ
∨
M
=
0
82
76
79
81
mpjaod
⊢
M
∈
ℕ
0
→
M
≤
M
Ramsey
∅
83
72
nn0red
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
∈
ℝ
84
nn0re
⊢
M
∈
ℕ
0
→
M
∈
ℝ
85
83
84
letri3d
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
=
M
↔
M
Ramsey
∅
≤
M
∧
M
≤
M
Ramsey
∅
86
42
82
85
mpbir2and
⊢
M
∈
ℕ
0
→
M
Ramsey
∅
=
M