Metamath Proof Explorer


Theorem rngqiprngimf1

Description: F is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngimf1 φF:B1-1C×I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 ringrng JRingJRng
14 4 13 syl φJRng
15 3 14 eqeltrrid φR𝑠IRng
16 1 2 15 rng2idlnsg φINrmSGrpR
17 nsgsubg INrmSGrpRISubGrpR
18 16 17 syl φISubGrpR
19 8 oveq2i R/𝑠˙=R/𝑠R~QGI
20 9 19 eqtri Q=R/𝑠R~QGI
21 eqid 2IdealR=2IdealR
22 20 21 qus2idrng RRngI2IdealRISubGrpRQRng
23 1 2 18 22 syl3anc φQRng
24 rnggrp QRngQGrp
25 24 grpmndd QRngQMnd
26 23 25 syl φQMnd
27 ringmnd JRingJMnd
28 4 27 syl φJMnd
29 11 xpsmnd0 QMndJMnd0P=0Q0J
30 26 28 29 syl2anc φ0P=0Q0J
31 30 sneqd φ0P=0Q0J
32 31 imaeq2d φF-10P=F-10Q0J
33 nfv xφ
34 opex x˙1˙·˙xV
35 34 a1i φxBx˙1˙·˙xV
36 33 35 12 fnmptd φFFnB
37 fncnvima2 FFnBF-10Q0J=aB|Fa0Q0J
38 36 37 syl φF-10Q0J=aB|Fa0Q0J
39 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φaBFa=a˙1˙·˙a
40 39 eleq1d φaBFa0Q0Ja˙1˙·˙a0Q0J
41 40 rabbidva φaB|Fa0Q0J=aB|a˙1˙·˙a0Q0J
42 eceq1 a=0Ra˙=0R˙
43 oveq2 a=0R1˙·˙a=1˙·˙0R
44 42 43 opeq12d a=0Ra˙1˙·˙a=0R˙1˙·˙0R
45 44 eleq1d a=0Ra˙1˙·˙a0Q0J0R˙1˙·˙0R0Q0J
46 rnggrp RRngRGrp
47 1 46 syl φRGrp
48 47 grpmndd φRMnd
49 eqid 0R=0R
50 5 49 mndidcl RMnd0RB
51 48 50 syl φ0RB
52 8 eceq2i 0R˙=0RR~QGI
53 20 49 qus0 INrmSGrpR0RR~QGI=0Q
54 16 53 syl φ0RR~QGI=0Q
55 52 54 eqtrid φ0R˙=0Q
56 1 2 15 rng2idl0 φ0RI
57 5 21 2idlss I2IdealRIB
58 2 57 syl φIB
59 3 5 49 ress0g RMnd0RIIB0R=0J
60 48 56 58 59 syl3anc φ0R=0J
61 60 oveq2d φ1˙·˙0R=1˙·˙0J
62 3 6 ressmulr I2IdealR·˙=J
63 2 62 syl φ·˙=J
64 63 oveqd φ1˙·˙0J=1˙J0J
65 eqid BaseJ=BaseJ
66 65 7 ringidcl JRing1˙BaseJ
67 eqid J=J
68 eqid 0J=0J
69 65 67 68 ringrz JRing1˙BaseJ1˙J0J=0J
70 4 66 69 syl2anc2 φ1˙J0J=0J
71 61 64 70 3eqtrd φ1˙·˙0R=0J
72 55 71 opeq12d φ0R˙1˙·˙0R=0Q0J
73 opex 0R˙1˙·˙0RV
74 73 elsn 0R˙1˙·˙0R0Q0J0R˙1˙·˙0R=0Q0J
75 72 74 sylibr φ0R˙1˙·˙0R0Q0J
76 opex a˙1˙·˙aV
77 76 elsn a˙1˙·˙a0Q0Ja˙1˙·˙a=0Q0J
78 8 ovexi ˙V
79 ecexg ˙Va˙V
80 78 79 ax-mp a˙V
81 ovex 1˙·˙aV
82 80 81 opth a˙1˙·˙a=0Q0Ja˙=0Q1˙·˙a=0J
83 77 82 bitri a˙1˙·˙a0Q0Ja˙=0Q1˙·˙a=0J
84 1 2 3 4 5 6 7 8 9 rngqiprngimf1lem φaBa˙=0Q1˙·˙a=0Ja=0R
85 83 84 biimtrid φaBa˙1˙·˙a0Q0Ja=0R
86 85 imp φaBa˙1˙·˙a0Q0Ja=0R
87 45 51 75 86 rabeqsnd φaB|a˙1˙·˙a0Q0J=0R
88 41 87 eqtrd φaB|Fa0Q0J=0R
89 32 38 88 3eqtrd φF-10P=0R
90 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm φFRGrpHomP
91 eqid BaseP=BaseP
92 eqid 0P=0P
93 5 91 49 92 kerf1ghm FRGrpHomPF:B1-1BasePF-10P=0R
94 90 93 syl φF:B1-1BasePF-10P=0R
95 89 94 mpbird φF:B1-1BaseP
96 eqidd φF=F
97 eqidd φB=B
98 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φBaseP=C×I
99 96 97 98 f1eq123d φF:B1-1BasePF:B1-1C×I
100 95 99 mpbid φF:B1-1C×I