Metamath Proof Explorer


Theorem scmatscm

Description: The multiplication of a matrix with a scalar matrix corresponds to a scalar multiplication. (Contributed by AV, 28-Dec-2019)

Ref Expression
Hypotheses scmatscm.k K=BaseR
scmatscm.a A=NMatR
scmatscm.b B=BaseA
scmatscm.t ˙=A
scmatscm.m ×˙=A
scmatscm.c S=NScMatR
Assertion scmatscm NFinRRingCScKmBC×˙m=c˙m

Proof

Step Hyp Ref Expression
1 scmatscm.k K=BaseR
2 scmatscm.a A=NMatR
3 scmatscm.b B=BaseA
4 scmatscm.t ˙=A
5 scmatscm.m ×˙=A
6 scmatscm.c S=NScMatR
7 eqid 1A=1A
8 1 2 3 7 4 6 scmatscmid NFinRRingCScKC=c˙1A
9 8 3expa NFinRRingCScKC=c˙1A
10 oveq1 C=c˙1AC×˙m=c˙1A×˙m
11 simpr NFinRRingRRing
12 11 ad4antr NFinRRingCScKmBiNjNRRing
13 simpl NFinRRingCSNFinRRing
14 13 adantr NFinRRingCScKNFinRRing
15 2 matring NFinRRingARing
16 3 7 ringidcl ARing1AB
17 15 16 syl NFinRRing1AB
18 17 adantr NFinRRingCS1AB
19 18 anim1ci NFinRRingCScKcK1AB
20 1 2 3 4 matvscl NFinRRingcK1ABc˙1AB
21 14 19 20 syl2anc NFinRRingCScKc˙1AB
22 21 anim1i NFinRRingCScKmBc˙1ABmB
23 22 adantr NFinRRingCScKmBiNjNc˙1ABmB
24 simpr NFinRRingCScKmBiNjNiNjN
25 2 3 5 matmulcell RRingc˙1ABmBiNjNic˙1A×˙mj=RkNic˙1AkRkmj
26 12 23 24 25 syl3anc NFinRRingCScKmBiNjNic˙1A×˙mj=RkNic˙1AkRkmj
27 13 anim1i NFinRRingCScKNFinRRingcK
28 df-3an NFinRRingcKNFinRRingcK
29 27 28 sylibr NFinRRingCScKNFinRRingcK
30 29 ad3antrrr NFinRRingCScKmBiNjNkNNFinRRingcK
31 eqid 0R=0R
32 2 1 4 31 matsc NFinRRingcKc˙1A=xN,yNifx=yc0R
33 30 32 syl NFinRRingCScKmBiNjNkNc˙1A=xN,yNifx=yc0R
34 eqeq12 x=iy=kx=yi=k
35 34 ifbid x=iy=kifx=yc0R=ifi=kc0R
36 35 adantl NFinRRingCScKmBiNjNkNx=iy=kifx=yc0R=ifi=kc0R
37 simpl iNjNiN
38 37 adantl NFinRRingCScKmBiNjNiN
39 38 adantr NFinRRingCScKmBiNjNkNiN
40 simpr NFinRRingCScKmBiNjNkNkN
41 vex cV
42 fvex 0RV
43 41 42 ifex ifi=kc0RV
44 43 a1i NFinRRingCScKmBiNjNkNifi=kc0RV
45 33 36 39 40 44 ovmpod NFinRRingCScKmBiNjNkNic˙1Ak=ifi=kc0R
46 45 oveq1d NFinRRingCScKmBiNjNkNic˙1AkRkmj=ifi=kc0RRkmj
47 46 mpteq2dva NFinRRingCScKmBiNjNkNic˙1AkRkmj=kNifi=kc0RRkmj
48 47 oveq2d NFinRRingCScKmBiNjNRkNic˙1AkRkmj=RkNifi=kc0RRkmj
49 ovif ifi=kc0RRkmj=ifi=kcRkmj0RRkmj
50 simp-6r NFinRRingCScKmBiNjNkNRRing
51 simplrr NFinRRingCScKmBiNjNkNjN
52 simpr NFinRRingCScKmBmB
53 52 ad2antrr NFinRRingCScKmBiNjNkNmB
54 2 1 3 40 51 53 matecld NFinRRingCScKmBiNjNkNkmjK
55 eqid R=R
56 1 55 31 ringlz RRingkmjK0RRkmj=0R
57 50 54 56 syl2anc NFinRRingCScKmBiNjNkN0RRkmj=0R
58 57 ifeq2d NFinRRingCScKmBiNjNkNifi=kcRkmj0RRkmj=ifi=kcRkmj0R
59 49 58 eqtrid NFinRRingCScKmBiNjNkNifi=kc0RRkmj=ifi=kcRkmj0R
60 59 mpteq2dva NFinRRingCScKmBiNjNkNifi=kc0RRkmj=kNifi=kcRkmj0R
61 60 oveq2d NFinRRingCScKmBiNjNRkNifi=kc0RRkmj=RkNifi=kcRkmj0R
62 ringmnd RRingRMnd
63 62 adantl NFinRRingRMnd
64 63 ad4antr NFinRRingCScKmBiNjNRMnd
65 simpl NFinRRingNFin
66 65 ad4antr NFinRRingCScKmBiNjNNFin
67 equcom i=kk=i
68 ifbi i=kk=iifi=kcRkmj0R=ifk=icRkmj0R
69 67 68 ax-mp ifi=kcRkmj0R=ifk=icRkmj0R
70 69 mpteq2i kNifi=kcRkmj0R=kNifk=icRkmj0R
71 1 eleq2i cKcBaseR
72 71 biimpi cKcBaseR
73 72 adantl NFinRRingCScKcBaseR
74 73 ad3antrrr NFinRRingCScKmBiNjNkNcBaseR
75 eqid BaseR=BaseR
76 2 75 3 40 51 53 matecld NFinRRingCScKmBiNjNkNkmjBaseR
77 75 55 ringcl RRingcBaseRkmjBaseRcRkmjBaseR
78 50 74 76 77 syl3anc NFinRRingCScKmBiNjNkNcRkmjBaseR
79 78 ralrimiva NFinRRingCScKmBiNjNkNcRkmjBaseR
80 31 64 66 38 70 79 gsummpt1n0 NFinRRingCScKmBiNjNRkNifi=kcRkmj0R=i/kcRkmj
81 48 61 80 3eqtrd NFinRRingCScKmBiNjNRkNic˙1AkRkmj=i/kcRkmj
82 csbov2g iNi/kcRkmj=cRi/kkmj
83 csbov1g iNi/kkmj=i/kkmj
84 csbvarg iNi/kk=i
85 84 oveq1d iNi/kkmj=imj
86 83 85 eqtrd iNi/kkmj=imj
87 86 oveq2d iNcRi/kkmj=cRimj
88 82 87 eqtrd iNi/kcRkmj=cRimj
89 88 adantr iNjNi/kcRkmj=cRimj
90 89 adantl NFinRRingCScKmBiNjNi/kcRkmj=cRimj
91 26 81 90 3eqtrd NFinRRingCScKmBiNjNic˙1A×˙mj=cRimj
92 simpr NFinRRingCScKcK
93 92 anim1i NFinRRingCScKmBcKmB
94 93 adantr NFinRRingCScKmBiNjNcKmB
95 2 3 1 4 55 matvscacell RRingcKmBiNjNic˙mj=cRimj
96 12 94 24 95 syl3anc NFinRRingCScKmBiNjNic˙mj=cRimj
97 91 96 eqtr4d NFinRRingCScKmBiNjNic˙1A×˙mj=ic˙mj
98 97 ralrimivva NFinRRingCScKmBiNjNic˙1A×˙mj=ic˙mj
99 15 ad3antrrr NFinRRingCScKmBARing
100 21 adantr NFinRRingCScKmBc˙1AB
101 3 5 ringcl ARingc˙1ABmBc˙1A×˙mB
102 99 100 52 101 syl3anc NFinRRingCScKmBc˙1A×˙mB
103 13 ad2antrr NFinRRingCScKmBNFinRRing
104 1 2 3 4 matvscl NFinRRingcKmBc˙mB
105 103 93 104 syl2anc NFinRRingCScKmBc˙mB
106 2 3 eqmat c˙1A×˙mBc˙mBc˙1A×˙m=c˙miNjNic˙1A×˙mj=ic˙mj
107 102 105 106 syl2anc NFinRRingCScKmBc˙1A×˙m=c˙miNjNic˙1A×˙mj=ic˙mj
108 98 107 mpbird NFinRRingCScKmBc˙1A×˙m=c˙m
109 10 108 sylan9eqr NFinRRingCScKmBC=c˙1AC×˙m=c˙m
110 109 ex NFinRRingCScKmBC=c˙1AC×˙m=c˙m
111 110 ralrimdva NFinRRingCScKC=c˙1AmBC×˙m=c˙m
112 111 reximdva NFinRRingCScKC=c˙1AcKmBC×˙m=c˙m
113 9 112 mpd NFinRRingCScKmBC×˙m=c˙m