Metamath Proof Explorer


Theorem selberg3r

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of Shapiro, p. 429. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion selberg3r x1+∞Rxlogx+2logxn=1xΛnRxnlognx𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 elioore x1+∞x
3 2 adantl x1+∞x
4 1rp 1+
5 4 a1i x1+∞1+
6 1red x1+∞1
7 eliooord x1+∞1<xx<+∞
8 7 adantl x1+∞1<xx<+∞
9 8 simpld x1+∞1<x
10 6 3 9 ltled x1+∞1x
11 3 5 10 rpgecld x1+∞x+
12 11 relogcld x1+∞logx
13 12 recnd x1+∞logx
14 13 2timesd x1+∞2logx=logx+logx
15 14 oveq2d x1+∞ψxlogx+2logxn=1xΛnψxnlognx2logx=ψxlogx+2logxn=1xΛnψxnlognxlogx+logx
16 chpcl xψx
17 3 16 syl x1+∞ψx
18 17 12 remulcld x1+∞ψxlogx
19 2re 2
20 19 a1i x1+∞2
21 3 9 rplogcld x1+∞logx+
22 20 21 rerpdivcld x1+∞2logx
23 fzfid x1+∞1xFin
24 elfznn n1xn
25 24 adantl x1+∞n1xn
26 vmacl nΛn
27 25 26 syl x1+∞n1xΛn
28 3 adantr x1+∞n1xx
29 28 25 nndivred x1+∞n1xxn
30 chpcl xnψxn
31 29 30 syl x1+∞n1xψxn
32 27 31 remulcld x1+∞n1xΛnψxn
33 25 nnrpd x1+∞n1xn+
34 33 relogcld x1+∞n1xlogn
35 32 34 remulcld x1+∞n1xΛnψxnlogn
36 23 35 fsumrecl x1+∞n=1xΛnψxnlogn
37 22 36 remulcld x1+∞2logxn=1xΛnψxnlogn
38 18 37 readdcld x1+∞ψxlogx+2logxn=1xΛnψxnlogn
39 38 11 rerpdivcld x1+∞ψxlogx+2logxn=1xΛnψxnlognx
40 39 recnd x1+∞ψxlogx+2logxn=1xΛnψxnlognx
41 40 13 13 subsub4d x1+∞ψxlogx+2logxn=1xΛnψxnlognx-logx-logx=ψxlogx+2logxn=1xΛnψxnlognxlogx+logx
42 15 41 eqtr4d x1+∞ψxlogx+2logxn=1xΛnψxnlognx2logx=ψxlogx+2logxn=1xΛnψxnlognx-logx-logx
43 42 oveq1d x1+∞ψxlogx+2logxn=1xΛnψxnlognx-2logx-2logxn=1xΛnnlognlogx=ψxlogx+2logxn=1xΛnψxnlognxlogx-logx-2logxn=1xΛnnlognlogx
44 40 13 subcld x1+∞ψxlogx+2logxn=1xΛnψxnlognxlogx
45 2cn 2
46 45 a1i x1+∞2
47 21 rpne0d x1+∞logx0
48 46 13 47 divcld x1+∞2logx
49 27 25 nndivred x1+∞n1xΛnn
50 49 34 remulcld x1+∞n1xΛnnlogn
51 23 50 fsumrecl x1+∞n=1xΛnnlogn
52 51 recnd x1+∞n=1xΛnnlogn
53 48 52 mulcld x1+∞2logxn=1xΛnnlogn
54 44 53 13 nnncan2d x1+∞ψxlogx+2logxn=1xΛnψxnlognxlogx-logx-2logxn=1xΛnnlognlogx=ψxlogx+2logxn=1xΛnψxnlognx-logx-2logxn=1xΛnnlogn
55 1 pntrf R:+
56 55 ffvelcdmi x+Rx
57 11 56 syl x1+∞Rx
58 57 recnd x1+∞Rx
59 58 13 mulcld x1+∞Rxlogx
60 37 recnd x1+∞2logxn=1xΛnψxnlogn
61 59 60 addcld x1+∞Rxlogx+2logxn=1xΛnψxnlogn
62 3 recnd x1+∞x
63 62 53 mulcld x1+∞x2logxn=1xΛnnlogn
64 11 rpne0d x1+∞x0
65 61 63 62 64 divsubdird x1+∞Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlognx=Rxlogx+2logxn=1xΛnψxnlognxx2logxn=1xΛnnlognx
66 59 60 63 addsubassd x1+∞Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlogn=Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlogn
67 36 recnd x1+∞n=1xΛnψxnlogn
68 62 52 mulcld x1+∞xn=1xΛnnlogn
69 48 67 68 subdid x1+∞2logxn=1xΛnψxnlognxn=1xΛnnlogn=2logxn=1xΛnψxnlogn2logxxn=1xΛnnlogn
70 50 recnd x1+∞n1xΛnnlogn
71 23 62 70 fsummulc2 x1+∞xn=1xΛnnlogn=n=1xxΛnnlogn
72 71 oveq2d x1+∞n=1xΛnψxnlognxn=1xΛnnlogn=n=1xΛnψxnlognn=1xxΛnnlogn
73 35 recnd x1+∞n1xΛnψxnlogn
74 62 adantr x1+∞n1xx
75 74 70 mulcld x1+∞n1xxΛnnlogn
76 23 73 75 fsumsub x1+∞n=1xΛnψxnlognxΛnnlogn=n=1xΛnψxnlognn=1xxΛnnlogn
77 72 76 eqtr4d x1+∞n=1xΛnψxnlognxn=1xΛnnlogn=n=1xΛnψxnlognxΛnnlogn
78 27 recnd x1+∞n1xΛn
79 31 recnd x1+∞n1xψxn
80 34 recnd x1+∞n1xlogn
81 78 79 80 mul32d x1+∞n1xΛnψxnlogn=Λnlognψxn
82 25 nncnd x1+∞n1xn
83 25 nnne0d x1+∞n1xn0
84 78 80 82 83 div23d x1+∞n1xΛnlognn=Λnnlogn
85 84 oveq2d x1+∞n1xxΛnlognn=xΛnnlogn
86 78 80 mulcld x1+∞n1xΛnlogn
87 74 86 82 83 div12d x1+∞n1xxΛnlognn=Λnlognxn
88 85 87 eqtr3d x1+∞n1xxΛnnlogn=Λnlognxn
89 81 88 oveq12d x1+∞n1xΛnψxnlognxΛnnlogn=ΛnlognψxnΛnlognxn
90 11 adantr x1+∞n1xx+
91 90 33 rpdivcld x1+∞n1xxn+
92 1 pntrval xn+Rxn=ψxnxn
93 91 92 syl x1+∞n1xRxn=ψxnxn
94 93 oveq2d x1+∞n1xΛnlognRxn=Λnlognψxnxn
95 29 recnd x1+∞n1xxn
96 86 79 95 subdid x1+∞n1xΛnlognψxnxn=ΛnlognψxnΛnlognxn
97 94 96 eqtrd x1+∞n1xΛnlognRxn=ΛnlognψxnΛnlognxn
98 89 97 eqtr4d x1+∞n1xΛnψxnlognxΛnnlogn=ΛnlognRxn
99 55 ffvelcdmi xn+Rxn
100 91 99 syl x1+∞n1xRxn
101 100 recnd x1+∞n1xRxn
102 78 101 80 mul32d x1+∞n1xΛnRxnlogn=ΛnlognRxn
103 98 102 eqtr4d x1+∞n1xΛnψxnlognxΛnnlogn=ΛnRxnlogn
104 103 sumeq2dv x1+∞n=1xΛnψxnlognxΛnnlogn=n=1xΛnRxnlogn
105 77 104 eqtrd x1+∞n=1xΛnψxnlognxn=1xΛnnlogn=n=1xΛnRxnlogn
106 105 oveq2d x1+∞2logxn=1xΛnψxnlognxn=1xΛnnlogn=2logxn=1xΛnRxnlogn
107 48 62 52 mul12d x1+∞2logxxn=1xΛnnlogn=x2logxn=1xΛnnlogn
108 107 oveq2d x1+∞2logxn=1xΛnψxnlogn2logxxn=1xΛnnlogn=2logxn=1xΛnψxnlognx2logxn=1xΛnnlogn
109 69 106 108 3eqtr3rd x1+∞2logxn=1xΛnψxnlognx2logxn=1xΛnnlogn=2logxn=1xΛnRxnlogn
110 109 oveq2d x1+∞Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlogn=Rxlogx+2logxn=1xΛnRxnlogn
111 66 110 eqtrd x1+∞Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlogn=Rxlogx+2logxn=1xΛnRxnlogn
112 111 oveq1d x1+∞Rxlogx+2logxn=1xΛnψxnlogn-x2logxn=1xΛnnlognx=Rxlogx+2logxn=1xΛnRxnlognx
113 1 pntrval x+Rx=ψxx
114 11 113 syl x1+∞Rx=ψxx
115 114 oveq1d x1+∞Rxlogx=ψxxlogx
116 17 recnd x1+∞ψx
117 116 62 13 subdird x1+∞ψxxlogx=ψxlogxxlogx
118 115 117 eqtrd x1+∞Rxlogx=ψxlogxxlogx
119 118 oveq1d x1+∞Rxlogx+2logxn=1xΛnψxnlogn=ψxlogx-xlogx+2logxn=1xΛnψxnlogn
120 18 recnd x1+∞ψxlogx
121 62 13 mulcld x1+∞xlogx
122 120 60 121 addsubd x1+∞ψxlogx+2logxn=1xΛnψxnlogn-xlogx=ψxlogx-xlogx+2logxn=1xΛnψxnlogn
123 119 122 eqtr4d x1+∞Rxlogx+2logxn=1xΛnψxnlogn=ψxlogx+2logxn=1xΛnψxnlogn-xlogx
124 123 oveq1d x1+∞Rxlogx+2logxn=1xΛnψxnlognx=ψxlogx+2logxn=1xΛnψxnlogn-xlogxx
125 38 recnd x1+∞ψxlogx+2logxn=1xΛnψxnlogn
126 125 121 62 64 divsubdird x1+∞ψxlogx+2logxn=1xΛnψxnlogn-xlogxx=ψxlogx+2logxn=1xΛnψxnlognxxlogxx
127 13 62 64 divcan3d x1+∞xlogxx=logx
128 127 oveq2d x1+∞ψxlogx+2logxn=1xΛnψxnlognxxlogxx=ψxlogx+2logxn=1xΛnψxnlognxlogx
129 126 128 eqtrd x1+∞ψxlogx+2logxn=1xΛnψxnlogn-xlogxx=ψxlogx+2logxn=1xΛnψxnlognxlogx
130 124 129 eqtrd x1+∞Rxlogx+2logxn=1xΛnψxnlognx=ψxlogx+2logxn=1xΛnψxnlognxlogx
131 53 62 64 divcan3d x1+∞x2logxn=1xΛnnlognx=2logxn=1xΛnnlogn
132 130 131 oveq12d x1+∞Rxlogx+2logxn=1xΛnψxnlognxx2logxn=1xΛnnlognx=ψxlogx+2logxn=1xΛnψxnlognx-logx-2logxn=1xΛnnlogn
133 65 112 132 3eqtr3rd x1+∞ψxlogx+2logxn=1xΛnψxnlognx-logx-2logxn=1xΛnnlogn=Rxlogx+2logxn=1xΛnRxnlognx
134 43 54 133 3eqtrrd x1+∞Rxlogx+2logxn=1xΛnRxnlognx=ψxlogx+2logxn=1xΛnψxnlognx-2logx-2logxn=1xΛnnlognlogx
135 134 mpteq2dva x1+∞Rxlogx+2logxn=1xΛnRxnlognx=x1+∞ψxlogx+2logxn=1xΛnψxnlognx-2logx-2logxn=1xΛnnlognlogx
136 20 12 remulcld x1+∞2logx
137 39 136 resubcld x1+∞ψxlogx+2logxn=1xΛnψxnlognx2logx
138 22 51 remulcld x1+∞2logxn=1xΛnnlogn
139 138 12 resubcld x1+∞2logxn=1xΛnnlognlogx
140 selberg3 x1+∞ψxlogx+2logxn=1xΛnψxnlognx2logx𝑂1
141 140 a1i x1+∞ψxlogx+2logxn=1xΛnψxnlognx2logx𝑂1
142 20 recnd x1+∞2
143 51 21 rerpdivcld x1+∞n=1xΛnnlognlogx
144 143 recnd x1+∞n=1xΛnnlognlogx
145 12 rehalfcld x1+∞logx2
146 145 recnd x1+∞logx2
147 142 144 146 subdid x1+∞2n=1xΛnnlognlogxlogx2=2n=1xΛnnlognlogx2logx2
148 142 13 52 47 div32d x1+∞2logxn=1xΛnnlogn=2n=1xΛnnlognlogx
149 148 eqcomd x1+∞2n=1xΛnnlognlogx=2logxn=1xΛnnlogn
150 2ne0 20
151 150 a1i x1+∞20
152 13 142 151 divcan2d x1+∞2logx2=logx
153 149 152 oveq12d x1+∞2n=1xΛnnlognlogx2logx2=2logxn=1xΛnnlognlogx
154 147 153 eqtrd x1+∞2n=1xΛnnlognlogxlogx2=2logxn=1xΛnnlognlogx
155 154 mpteq2dva x1+∞2n=1xΛnnlognlogxlogx2=x1+∞2logxn=1xΛnnlognlogx
156 143 145 resubcld x1+∞n=1xΛnnlognlogxlogx2
157 ioossre 1+∞
158 o1const 1+∞2x1+∞2𝑂1
159 157 45 158 mp2an x1+∞2𝑂1
160 159 a1i x1+∞2𝑂1
161 vmalogdivsum x1+∞n=1xΛnnlognlogxlogx2𝑂1
162 161 a1i x1+∞n=1xΛnnlognlogxlogx2𝑂1
163 20 156 160 162 o1mul2 x1+∞2n=1xΛnnlognlogxlogx2𝑂1
164 155 163 eqeltrrd x1+∞2logxn=1xΛnnlognlogx𝑂1
165 137 139 141 164 o1sub2 x1+∞ψxlogx+2logxn=1xΛnψxnlognx-2logx-2logxn=1xΛnnlognlogx𝑂1
166 135 165 eqeltrd x1+∞Rxlogx+2logxn=1xΛnRxnlognx𝑂1
167 166 mptru x1+∞Rxlogx+2logxn=1xΛnRxnlognx𝑂1