Metamath Proof Explorer


Theorem sge0ltfirp

Description: If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ltfirp.x φXV
sge0ltfirp.f φF:X0+∞
sge0ltfirp.y φY+
sge0ltfirp.re φsum^F
Assertion sge0ltfirp φx𝒫XFinsum^F<sum^Fx+Y

Proof

Step Hyp Ref Expression
1 sge0ltfirp.x φXV
2 sge0ltfirp.f φF:X0+∞
3 sge0ltfirp.y φY+
4 sge0ltfirp.re φsum^F
5 1 2 4 sge0rern φ¬+∞ranF
6 2 5 fge0iccico φF:X0+∞
7 6 sge0rnre φranx𝒫XFinyxFy
8 sge0rnn0 ranx𝒫XFinyxFy
9 8 a1i φranx𝒫XFinyxFy
10 1 2 4 sge0rnbnd φzwranx𝒫XFinyxFywz
11 7 9 10 3 suprltrp φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<w
12 nfv wφ
13 nfv wx𝒫XFinsum^F<sum^Fx+Y
14 simp1 φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wφ
15 vex wV
16 eqid x𝒫XFinyxFy=x𝒫XFinyxFy
17 16 elrnmpt wVwranx𝒫XFinyxFyx𝒫XFinw=yxFy
18 15 17 ax-mp wranx𝒫XFinyxFyx𝒫XFinw=yxFy
19 18 biimpi wranx𝒫XFinyxFyx𝒫XFinw=yxFy
20 19 adantr wranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinw=yxFy
21 nfmpt1 _xx𝒫XFinyxFy
22 21 nfrn _xranx𝒫XFinyxFy
23 nfcv _x
24 nfcv _x<
25 22 23 24 nfsup _xsupranx𝒫XFinyxFy<
26 nfcv _x
27 nfcv _xY
28 25 26 27 nfov _xsupranx𝒫XFinyxFy<Y
29 nfcv _xw
30 28 24 29 nfbr xsupranx𝒫XFinyxFy<Y<w
31 simpl supranx𝒫XFinyxFy<Y<ww=yxFysupranx𝒫XFinyxFy<Y<w
32 simpr supranx𝒫XFinyxFy<Y<ww=yxFyw=yxFy
33 31 32 breqtrd supranx𝒫XFinyxFy<Y<ww=yxFysupranx𝒫XFinyxFy<Y<yxFy
34 33 ex supranx𝒫XFinyxFy<Y<ww=yxFysupranx𝒫XFinyxFy<Y<yxFy
35 34 a1d supranx𝒫XFinyxFy<Y<wx𝒫XFinw=yxFysupranx𝒫XFinyxFy<Y<yxFy
36 30 35 reximdai supranx𝒫XFinyxFy<Y<wx𝒫XFinw=yxFyx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFy
37 36 adantl wranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinw=yxFyx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFy
38 20 37 mpd wranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFy
39 38 3adant1 φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFy
40 simpl φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFyφx𝒫XFin
41 1 2 4 sge0supre φsum^F=supranx𝒫XFinyxFy<
42 41 oveq1d φsum^FY=supranx𝒫XFinyxFy<Y
43 42 adantr φsupranx𝒫XFinyxFy<Y<yxFysum^FY=supranx𝒫XFinyxFy<Y
44 simpr φsupranx𝒫XFinyxFy<Y<yxFysupranx𝒫XFinyxFy<Y<yxFy
45 43 44 eqbrtrd φsupranx𝒫XFinyxFy<Y<yxFysum^FY<yxFy
46 45 adantlr φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFysum^FY<yxFy
47 simpr φx𝒫XFinsum^FY<yxFysum^FY<yxFy
48 4 adantr φx𝒫XFinsum^F
49 3 rpred φY
50 49 adantr φx𝒫XFinY
51 elinel2 x𝒫XFinxFin
52 51 adantl φx𝒫XFinxFin
53 rge0ssre 0+∞
54 6 adantr φx𝒫XFinF:X0+∞
55 54 adantr φx𝒫XFinyxF:X0+∞
56 elpwinss x𝒫XFinxX
57 56 adantl φx𝒫XFinxX
58 57 sselda φx𝒫XFinyxyX
59 55 58 ffvelcdmd φx𝒫XFinyxFy0+∞
60 53 59 sselid φx𝒫XFinyxFy
61 52 60 fsumrecl φx𝒫XFinyxFy
62 48 50 61 ltsubaddd φx𝒫XFinsum^FY<yxFysum^F<yxFy+Y
63 62 adantr φx𝒫XFinsum^FY<yxFysum^FY<yxFysum^F<yxFy+Y
64 47 63 mpbid φx𝒫XFinsum^FY<yxFysum^F<yxFy+Y
65 54 57 fssresd φx𝒫XFinFx:x0+∞
66 52 65 sge0fsum φx𝒫XFinsum^Fx=yxFxy
67 fvres yxFxy=Fy
68 67 sumeq2i yxFxy=yxFy
69 68 a1i φx𝒫XFinyxFxy=yxFy
70 66 69 eqtr2d φx𝒫XFinyxFy=sum^Fx
71 70 oveq1d φx𝒫XFinyxFy+Y=sum^Fx+Y
72 71 adantr φx𝒫XFinsum^FY<yxFyyxFy+Y=sum^Fx+Y
73 64 72 breqtrd φx𝒫XFinsum^FY<yxFysum^F<sum^Fx+Y
74 40 46 73 syl2anc φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFysum^F<sum^Fx+Y
75 74 ex φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFysum^F<sum^Fx+Y
76 75 reximdva φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFyx𝒫XFinsum^F<sum^Fx+Y
77 76 imp φx𝒫XFinsupranx𝒫XFinyxFy<Y<yxFyx𝒫XFinsum^F<sum^Fx+Y
78 14 39 77 syl2anc φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinsum^F<sum^Fx+Y
79 78 3exp φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinsum^F<sum^Fx+Y
80 12 13 79 rexlimd φwranx𝒫XFinyxFysupranx𝒫XFinyxFy<Y<wx𝒫XFinsum^F<sum^Fx+Y
81 11 80 mpd φx𝒫XFinsum^F<sum^Fx+Y