Metamath Proof Explorer


Theorem sitgaddlemb

Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019)

Ref Expression
Hypotheses sitgval.b B=BaseW
sitgval.j J=TopOpenW
sitgval.s S=𝛔J
sitgval.0 0˙=0W
sitgval.x ·˙=W
sitgval.h H=ℝHomScalarW
sitgval.1 φWV
sitgval.2 φMranmeasures
sitgadd.1 φWTopSp
sitgadd.2 φW𝑣H0+∞SLMod
sitgadd.3 φJFre
sitgadd.4 φFMW
sitgadd.5 φGMW
sitgadd.6 φScalarWℝExt
sitgadd.7 +˙=+W
Assertion sitgaddlemb φpranF×ranG0˙0˙HMF-11stpG-12ndp·˙2ndpB

Proof

Step Hyp Ref Expression
1 sitgval.b B=BaseW
2 sitgval.j J=TopOpenW
3 sitgval.s S=𝛔J
4 sitgval.0 0˙=0W
5 sitgval.x ·˙=W
6 sitgval.h H=ℝHomScalarW
7 sitgval.1 φWV
8 sitgval.2 φMranmeasures
9 sitgadd.1 φWTopSp
10 sitgadd.2 φW𝑣H0+∞SLMod
11 sitgadd.3 φJFre
12 sitgadd.4 φFMW
13 sitgadd.5 φGMW
14 sitgadd.6 φScalarWℝExt
15 sitgadd.7 +˙=+W
16 10 adantr φpranF×ranG0˙0˙W𝑣H0+∞SLMod
17 simpl φpranF×ranG0˙0˙φ
18 eqid BaseScalarW=BaseScalarW
19 18 rrhfe ScalarWℝExtℝHomScalarW:BaseScalarW
20 14 19 syl φℝHomScalarW:BaseScalarW
21 6 feq1i H:BaseScalarWℝHomScalarW:BaseScalarW
22 20 21 sylibr φH:BaseScalarW
23 22 ffnd φHFn
24 17 23 syl φpranF×ranG0˙0˙HFn
25 rge0ssre 0+∞
26 25 a1i φpranF×ranG0˙0˙0+∞
27 simpr φpranF×ranG0˙0˙pranF×ranG0˙0˙
28 27 eldifad φpranF×ranG0˙0˙pranF×ranG
29 xp1st pranF×ranG1stpranF
30 28 29 syl φpranF×ranG0˙0˙1stpranF
31 xp2nd pranF×ranG2ndpranG
32 28 31 syl φpranF×ranG0˙0˙2ndpranG
33 27 eldifbd φpranF×ranG0˙0˙¬p0˙0˙
34 velsn p0˙0˙p=0˙0˙
35 34 notbii ¬p0˙0˙¬p=0˙0˙
36 33 35 sylib φpranF×ranG0˙0˙¬p=0˙0˙
37 eqopi pranF×ranG1stp=0˙2ndp=0˙p=0˙0˙
38 37 ex pranF×ranG1stp=0˙2ndp=0˙p=0˙0˙
39 38 con3d pranF×ranG¬p=0˙0˙¬1stp=0˙2ndp=0˙
40 39 imp pranF×ranG¬p=0˙0˙¬1stp=0˙2ndp=0˙
41 28 36 40 syl2anc φpranF×ranG0˙0˙¬1stp=0˙2ndp=0˙
42 ianor ¬1stp=0˙2ndp=0˙¬1stp=0˙¬2ndp=0˙
43 df-ne 1stp0˙¬1stp=0˙
44 df-ne 2ndp0˙¬2ndp=0˙
45 43 44 orbi12i 1stp0˙2ndp0˙¬1stp=0˙¬2ndp=0˙
46 42 45 bitr4i ¬1stp=0˙2ndp=0˙1stp0˙2ndp0˙
47 41 46 sylib φpranF×ranG0˙0˙1stp0˙2ndp0˙
48 1 2 3 4 5 6 7 8 12 13 9 11 sibfinima φ1stpranF2ndpranG1stp0˙2ndp0˙MF-11stpG-12ndp0+∞
49 17 30 32 47 48 syl31anc φpranF×ranG0˙0˙MF-11stpG-12ndp0+∞
50 fnfvima HFn0+∞MF-11stpG-12ndp0+∞HMF-11stpG-12ndpH0+∞
51 24 26 49 50 syl3anc φpranF×ranG0˙0˙HMF-11stpG-12ndpH0+∞
52 imassrn H0+∞ranH
53 22 frnd φranHBaseScalarW
54 52 53 sstrid φH0+∞BaseScalarW
55 eqid ScalarW𝑠H0+∞=ScalarW𝑠H0+∞
56 55 18 ressbas2 H0+∞BaseScalarWH0+∞=BaseScalarW𝑠H0+∞
57 54 56 syl φH0+∞=BaseScalarW𝑠H0+∞
58 17 57 syl φpranF×ranG0˙0˙H0+∞=BaseScalarW𝑠H0+∞
59 51 58 eleqtrd φpranF×ranG0˙0˙HMF-11stpG-12ndpBaseScalarW𝑠H0+∞
60 1 2 3 4 5 6 7 8 13 sibff φG:domMJ
61 1 2 tpsuni WTopSpB=J
62 feq3 B=JG:domMBG:domMJ
63 9 61 62 3syl φG:domMBG:domMJ
64 60 63 mpbird φG:domMB
65 64 frnd φranGB
66 65 adantr φpranF×ranG0˙0˙ranGB
67 66 32 sseldd φpranF×ranG0˙0˙2ndpB
68 6 fvexi HV
69 imaexg HVH0+∞V
70 eqid W𝑣H0+∞=W𝑣H0+∞
71 70 1 resvbas H0+∞VB=BaseW𝑣H0+∞
72 68 69 71 mp2b B=BaseW𝑣H0+∞
73 eqid ScalarW=ScalarW
74 70 73 18 resvsca H0+∞VScalarW𝑠H0+∞=ScalarW𝑣H0+∞
75 68 69 74 mp2b ScalarW𝑠H0+∞=ScalarW𝑣H0+∞
76 70 5 resvvsca H0+∞V·˙=W𝑣H0+∞
77 68 69 76 mp2b ·˙=W𝑣H0+∞
78 eqid BaseScalarW𝑠H0+∞=BaseScalarW𝑠H0+∞
79 72 75 77 78 slmdvscl W𝑣H0+∞SLModHMF-11stpG-12ndpBaseScalarW𝑠H0+∞2ndpBHMF-11stpG-12ndp·˙2ndpB
80 16 59 67 79 syl3anc φpranF×ranG0˙0˙HMF-11stpG-12ndp·˙2ndpB