Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sitgval.b | |
|
sitgval.j | |
||
sitgval.s | |
||
sitgval.0 | |
||
sitgval.x | |
||
sitgval.h | |
||
sitgval.1 | |
||
sitgval.2 | |
||
sitgadd.1 | |
||
sitgadd.2 | |
||
sitgadd.3 | |
||
sitgadd.4 | |
||
sitgadd.5 | |
||
sitgadd.6 | |
||
sitgadd.7 | |
||
Assertion | sitgaddlemb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | |
|
2 | sitgval.j | |
|
3 | sitgval.s | |
|
4 | sitgval.0 | |
|
5 | sitgval.x | |
|
6 | sitgval.h | |
|
7 | sitgval.1 | |
|
8 | sitgval.2 | |
|
9 | sitgadd.1 | |
|
10 | sitgadd.2 | |
|
11 | sitgadd.3 | |
|
12 | sitgadd.4 | |
|
13 | sitgadd.5 | |
|
14 | sitgadd.6 | |
|
15 | sitgadd.7 | |
|
16 | 10 | adantr | |
17 | simpl | |
|
18 | eqid | |
|
19 | 18 | rrhfe | |
20 | 14 19 | syl | |
21 | 6 | feq1i | |
22 | 20 21 | sylibr | |
23 | 22 | ffnd | |
24 | 17 23 | syl | |
25 | rge0ssre | |
|
26 | 25 | a1i | |
27 | simpr | |
|
28 | 27 | eldifad | |
29 | xp1st | |
|
30 | 28 29 | syl | |
31 | xp2nd | |
|
32 | 28 31 | syl | |
33 | 27 | eldifbd | |
34 | velsn | |
|
35 | 34 | notbii | |
36 | 33 35 | sylib | |
37 | eqopi | |
|
38 | 37 | ex | |
39 | 38 | con3d | |
40 | 39 | imp | |
41 | 28 36 40 | syl2anc | |
42 | ianor | |
|
43 | df-ne | |
|
44 | df-ne | |
|
45 | 43 44 | orbi12i | |
46 | 42 45 | bitr4i | |
47 | 41 46 | sylib | |
48 | 1 2 3 4 5 6 7 8 12 13 9 11 | sibfinima | |
49 | 17 30 32 47 48 | syl31anc | |
50 | fnfvima | |
|
51 | 24 26 49 50 | syl3anc | |
52 | imassrn | |
|
53 | 22 | frnd | |
54 | 52 53 | sstrid | |
55 | eqid | |
|
56 | 55 18 | ressbas2 | |
57 | 54 56 | syl | |
58 | 17 57 | syl | |
59 | 51 58 | eleqtrd | |
60 | 1 2 3 4 5 6 7 8 13 | sibff | |
61 | 1 2 | tpsuni | |
62 | feq3 | |
|
63 | 9 61 62 | 3syl | |
64 | 60 63 | mpbird | |
65 | 64 | frnd | |
66 | 65 | adantr | |
67 | 66 32 | sseldd | |
68 | 6 | fvexi | |
69 | imaexg | |
|
70 | eqid | |
|
71 | 70 1 | resvbas | |
72 | 68 69 71 | mp2b | |
73 | eqid | |
|
74 | 70 73 18 | resvsca | |
75 | 68 69 74 | mp2b | |
76 | 70 5 | resvvsca | |
77 | 68 69 76 | mp2b | |
78 | eqid | |
|
79 | 72 75 77 78 | slmdvscl | |
80 | 16 59 67 79 | syl3anc | |