Metamath Proof Explorer


Theorem smupvallem

Description: If A only has elements less than N , then all elements of the partial sum sequence past N already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
smuval.n φN0
smupvallem.a φA0..^N
smupvallem.m φMN
Assertion smupvallem φPM=AsmulB

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 smuval.n φN0
5 smupvallem.a φA0..^N
6 smupvallem.m φMN
7 1 2 3 smupf φP:0𝒫0
8 eluznn0 N0MNM0
9 4 6 8 syl2anc φM0
10 7 9 ffvelcdmd φPM𝒫0
11 10 elpwid φPM0
12 11 sseld φkPMk0
13 1 2 3 smufval φAsmulB=k0|kPk+1
14 ssrab2 k0|kPk+10
15 13 14 eqsstrdi φAsmulB0
16 15 sseld φkAsmulBk0
17 1 ad2antrr φk0Nk+1A0
18 2 ad2antrr φk0Nk+1B0
19 simplr φk0Nk+1k0
20 6 adantr φk0MN
21 uztrn MNNk+1Mk+1
22 20 21 sylan φk0Nk+1Mk+1
23 17 18 3 19 22 smuval2 φk0Nk+1kAsmulBkPM
24 23 bicomd φk0Nk+1kPMkAsmulB
25 6 ad2antrr φk0k+1NMN
26 simpll φk0k+1Nφ
27 fveqeq2 x=NPx=PNPN=PN
28 27 imbi2d x=NφPx=PNφPN=PN
29 fveqeq2 x=kPx=PNPk=PN
30 29 imbi2d x=kφPx=PNφPk=PN
31 fveqeq2 x=k+1Px=PNPk+1=PN
32 31 imbi2d x=k+1φPx=PNφPk+1=PN
33 fveqeq2 x=MPx=PNPM=PN
34 33 imbi2d x=MφPx=PNφPM=PN
35 eqidd φPN=PN
36 1 adantr φkNA0
37 2 adantr φkNB0
38 eluznn0 N0kNk0
39 4 38 sylan φkNk0
40 36 37 3 39 smupp1 φkNPk+1=Pksaddn0|kAnkB
41 4 nn0red φN
42 41 adantr φkNN
43 39 nn0red φkNk
44 eluzle kNNk
45 44 adantl φkNNk
46 42 43 45 lensymd φkN¬k<N
47 5 adantr φkNA0..^N
48 47 sseld φkNkAk0..^N
49 elfzolt2 k0..^Nk<N
50 48 49 syl6 φkNkAk<N
51 50 adantrd φkNkAnkBk<N
52 46 51 mtod φkN¬kAnkB
53 52 ralrimivw φkNn0¬kAnkB
54 rabeq0 n0|kAnkB=n0¬kAnkB
55 53 54 sylibr φkNn0|kAnkB=
56 55 oveq2d φkNPksaddn0|kAnkB=Pksadd
57 7 adantr φkNP:0𝒫0
58 57 39 ffvelcdmd φkNPk𝒫0
59 58 elpwid φkNPk0
60 sadid1 Pk0Pksadd=Pk
61 59 60 syl φkNPksadd=Pk
62 40 56 61 3eqtrd φkNPk+1=Pk
63 62 eqeq1d φkNPk+1=PNPk=PN
64 63 biimprd φkNPk=PNPk+1=PN
65 64 expcom kNφPk=PNPk+1=PN
66 65 a2d kNφPk=PNφPk+1=PN
67 28 30 32 34 35 66 uzind4i MNφPM=PN
68 25 26 67 sylc φk0k+1NPM=PN
69 simpr φk0k+1Nk+1N
70 28 30 32 32 35 66 uzind4i k+1NφPk+1=PN
71 69 26 70 sylc φk0k+1NPk+1=PN
72 68 71 eqtr4d φk0k+1NPM=Pk+1
73 72 eleq2d φk0k+1NkPMkPk+1
74 1 ad2antrr φk0k+1NA0
75 2 ad2antrr φk0k+1NB0
76 simplr φk0k+1Nk0
77 74 75 3 76 smuval φk0k+1NkAsmulBkPk+1
78 73 77 bitr4d φk0k+1NkPMkAsmulB
79 simpr φk0k0
80 79 nn0zd φk0k
81 80 peano2zd φk0k+1
82 4 nn0zd φN
83 82 adantr φk0N
84 uztric k+1NNk+1k+1N
85 81 83 84 syl2anc φk0Nk+1k+1N
86 24 78 85 mpjaodan φk0kPMkAsmulB
87 86 ex φk0kPMkAsmulB
88 12 16 87 pm5.21ndd φkPMkAsmulB
89 88 eqrdv φPM=AsmulB