Metamath Proof Explorer


Theorem suborng

Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion suborng RoRingR𝑠ARingR𝑠AoRing

Proof

Step Hyp Ref Expression
1 simpr RoRingR𝑠ARingR𝑠ARing
2 ringgrp R𝑠ARingR𝑠AGrp
3 2 adantl RoRingR𝑠ARingR𝑠AGrp
4 orngogrp RoRingRoGrp
5 isogrp RoGrpRGrpRoMnd
6 5 simprbi RoGrpRoMnd
7 4 6 syl RoRingRoMnd
8 ringmnd R𝑠ARingR𝑠AMnd
9 submomnd RoMndR𝑠AMndR𝑠AoMnd
10 7 8 9 syl2an RoRingR𝑠ARingR𝑠AoMnd
11 isogrp R𝑠AoGrpR𝑠AGrpR𝑠AoMnd
12 3 10 11 sylanbrc RoRingR𝑠ARingR𝑠AoGrp
13 simp-4l RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbRoRing
14 reldmress Reldom𝑠
15 14 ovprc2 ¬AVR𝑠A=
16 15 fveq2d ¬AVBaseR𝑠A=Base
17 16 adantl RoRingR𝑠ARing¬AVBaseR𝑠A=Base
18 base0 =Base
19 17 18 eqtr4di RoRingR𝑠ARing¬AVBaseR𝑠A=
20 eqid BaseR𝑠A=BaseR𝑠A
21 eqid 1R𝑠A=1R𝑠A
22 20 21 ringidcl R𝑠ARing1R𝑠ABaseR𝑠A
23 22 ne0d R𝑠ARingBaseR𝑠A
24 23 ad2antlr RoRingR𝑠ARing¬AVBaseR𝑠A
25 24 neneqd RoRingR𝑠ARing¬AV¬BaseR𝑠A=
26 19 25 condan RoRingR𝑠ARingAV
27 eqid R𝑠A=R𝑠A
28 eqid BaseR=BaseR
29 27 28 ressbas AVABaseR=BaseR𝑠A
30 inss2 ABaseRBaseR
31 29 30 eqsstrrdi AVBaseR𝑠ABaseR
32 26 31 syl RoRingR𝑠ARingBaseR𝑠ABaseR
33 32 ad3antrrr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbBaseR𝑠ABaseR
34 simpllr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbaBaseR𝑠A
35 33 34 sseldd RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbaBaseR
36 simprl RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠Aa
37 orngring RoRingRRing
38 ringgrp RRingRGrp
39 37 38 syl RoRingRGrp
40 39 adantr RoRingR𝑠ARingRGrp
41 28 ressinbas AVR𝑠A=R𝑠ABaseR
42 29 oveq2d AVR𝑠ABaseR=R𝑠BaseR𝑠A
43 41 42 eqtrd AVR𝑠A=R𝑠BaseR𝑠A
44 26 43 syl RoRingR𝑠ARingR𝑠A=R𝑠BaseR𝑠A
45 44 3 eqeltrrd RoRingR𝑠ARingR𝑠BaseR𝑠AGrp
46 28 issubg BaseR𝑠ASubGrpRRGrpBaseR𝑠ABaseRR𝑠BaseR𝑠AGrp
47 40 32 45 46 syl3anbrc RoRingR𝑠ARingBaseR𝑠ASubGrpR
48 eqid R𝑠BaseR𝑠A=R𝑠BaseR𝑠A
49 eqid 0R=0R
50 48 49 subg0 BaseR𝑠ASubGrpR0R=0R𝑠BaseR𝑠A
51 47 50 syl RoRingR𝑠ARing0R=0R𝑠BaseR𝑠A
52 44 fveq2d RoRingR𝑠ARing0R𝑠A=0R𝑠BaseR𝑠A
53 51 52 eqtr4d RoRingR𝑠ARing0R=0R𝑠A
54 53 ad2antrr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R=0R𝑠A
55 26 ad2antrr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠AAV
56 eqid R=R
57 27 56 ressle AVR=R𝑠A
58 55 57 syl RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠AR=R𝑠A
59 eqidd RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠Aa=a
60 54 58 59 breq123d RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0RRa0R𝑠AR𝑠Aa
61 60 adantr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRa0R𝑠AR𝑠Aa
62 36 61 mpbird RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRa
63 simplr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbbBaseR𝑠A
64 33 63 sseldd RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbbBaseR
65 simprr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠Ab
66 eqidd RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠Ab=b
67 54 58 66 breq123d RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0RRb0R𝑠AR𝑠Ab
68 67 adantr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRb0R𝑠AR𝑠Ab
69 65 68 mpbird RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRb
70 eqid R=R
71 28 56 49 70 orngmul RoRingaBaseR0RRabBaseR0RRb0RRaRb
72 13 35 62 64 69 71 syl122anc RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRaRb
73 54 adantr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R=0R𝑠A
74 58 adantr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbR=R𝑠A
75 55 adantr RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbAV
76 27 70 ressmulr AVR=R𝑠A
77 75 76 syl RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbR=R𝑠A
78 77 oveqd RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠AbaRb=aR𝑠Ab
79 73 74 78 breq123d RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0RRaRb0R𝑠AR𝑠AaR𝑠Ab
80 72 79 mpbid RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠AaR𝑠Ab
81 80 ex RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠AaR𝑠Ab
82 81 anasss RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠AaR𝑠Ab
83 82 ralrimivva RoRingR𝑠ARingaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠AaR𝑠Ab
84 eqid 0R𝑠A=0R𝑠A
85 eqid R𝑠A=R𝑠A
86 eqid R𝑠A=R𝑠A
87 20 84 85 86 isorng R𝑠AoRingR𝑠ARingR𝑠AoGrpaBaseR𝑠AbBaseR𝑠A0R𝑠AR𝑠Aa0R𝑠AR𝑠Ab0R𝑠AR𝑠AaR𝑠Ab
88 1 12 83 87 syl3anbrc RoRingR𝑠ARingR𝑠AoRing