Metamath Proof Explorer


Theorem sylow3lem3

Description: Lemma for sylow3 , first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup K . (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem1.a +˙=+G
sylow3lem1.d -˙=-G
sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
sylow3lem2.k φKPpSylG
sylow3lem2.h H=uX|u˙K=K
sylow3lem2.n N=xX|yXx+˙yKy+˙xK
Assertion sylow3lem3 φPpSylG=X/G~QGN

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem1.a +˙=+G
6 sylow3lem1.d -˙=-G
7 sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
8 sylow3lem2.k φKPpSylG
9 sylow3lem2.h H=uX|u˙K=K
10 sylow3lem2.n N=xX|yXx+˙yKy+˙xK
11 pwfi XFin𝒫XFin
12 3 11 sylib φ𝒫XFin
13 slwsubg xPpSylGxSubGrpG
14 1 subgss xSubGrpGxX
15 13 14 syl xPpSylGxX
16 13 15 elpwd xPpSylGx𝒫X
17 16 ssriv PpSylG𝒫X
18 ssfi 𝒫XFinPpSylG𝒫XPpSylGFin
19 12 17 18 sylancl φPpSylGFin
20 hashcl PpSylGFinPpSylG0
21 19 20 syl φPpSylG0
22 21 nn0cnd φPpSylG
23 10 1 5 nmzsubg GGrpNSubGrpG
24 eqid G~QGN=G~QGN
25 1 24 eqger NSubGrpGG~QGNErX
26 2 23 25 3syl φG~QGNErX
27 26 qsss φX/G~QGN𝒫X
28 12 27 ssfid φX/G~QGNFin
29 hashcl X/G~QGNFinX/G~QGN0
30 28 29 syl φX/G~QGN0
31 30 nn0cnd φX/G~QGN
32 2 23 syl φNSubGrpG
33 eqid 0G=0G
34 33 subg0cl NSubGrpG0GN
35 ne0i 0GNN
36 32 34 35 3syl φN
37 1 subgss NSubGrpGNX
38 2 23 37 3syl φNX
39 3 38 ssfid φNFin
40 hashnncl NFinNN
41 39 40 syl φNN
42 36 41 mpbird φN
43 42 nncnd φN
44 42 nnne0d φN0
45 1 2 3 4 5 6 7 sylow3lem1 φ˙GGrpActPpSylG
46 eqid G~QGH=G~QGH
47 eqid xy|xyPpSylGgXg˙x=y=xy|xyPpSylGgXg˙x=y
48 1 9 46 47 orbsta2 ˙GGrpActPpSylGKPpSylGXFinX=Kxy|xyPpSylGgXg˙x=yH
49 45 8 3 48 syl21anc φX=Kxy|xyPpSylGgXg˙x=yH
50 1 24 32 3 lagsubg2 φX=X/G~QGNN
51 47 1 gaorber ˙GGrpActPpSylGxy|xyPpSylGgXg˙x=yErPpSylG
52 45 51 syl φxy|xyPpSylGgXg˙x=yErPpSylG
53 52 ecss φKxy|xyPpSylGgXg˙x=yPpSylG
54 8 adantr φhPpSylGKPpSylG
55 simpr φhPpSylGhPpSylG
56 3 adantr φhPpSylGXFin
57 1 56 55 54 5 6 sylow2 φhPpSylGuXh=ranzKu+˙z-˙u
58 eqcom u˙K=hh=u˙K
59 simpr φhPpSylGuXuX
60 54 adantr φhPpSylGuXKPpSylG
61 mptexg KPpSylGzKu+˙z-˙uV
62 rnexg zKu+˙z-˙uVranzKu+˙z-˙uV
63 60 61 62 3syl φhPpSylGuXranzKu+˙z-˙uV
64 simpr x=uy=Ky=K
65 simpl x=uy=Kx=u
66 65 oveq1d x=uy=Kx+˙z=u+˙z
67 66 65 oveq12d x=uy=Kx+˙z-˙x=u+˙z-˙u
68 64 67 mpteq12dv x=uy=Kzyx+˙z-˙x=zKu+˙z-˙u
69 68 rneqd x=uy=Kranzyx+˙z-˙x=ranzKu+˙z-˙u
70 69 7 ovmpoga uXKPpSylGranzKu+˙z-˙uVu˙K=ranzKu+˙z-˙u
71 59 60 63 70 syl3anc φhPpSylGuXu˙K=ranzKu+˙z-˙u
72 71 eqeq2d φhPpSylGuXh=u˙Kh=ranzKu+˙z-˙u
73 58 72 bitrid φhPpSylGuXu˙K=hh=ranzKu+˙z-˙u
74 73 rexbidva φhPpSylGuXu˙K=huXh=ranzKu+˙z-˙u
75 57 74 mpbird φhPpSylGuXu˙K=h
76 47 gaorb Kxy|xyPpSylGgXg˙x=yhKPpSylGhPpSylGuXu˙K=h
77 54 55 75 76 syl3anbrc φhPpSylGKxy|xyPpSylGgXg˙x=yh
78 elecg hPpSylGKPpSylGhKxy|xyPpSylGgXg˙x=yKxy|xyPpSylGgXg˙x=yh
79 55 54 78 syl2anc φhPpSylGhKxy|xyPpSylGgXg˙x=yKxy|xyPpSylGgXg˙x=yh
80 77 79 mpbird φhPpSylGhKxy|xyPpSylGgXg˙x=y
81 53 80 eqelssd φKxy|xyPpSylGgXg˙x=y=PpSylG
82 81 fveq2d φKxy|xyPpSylGgXg˙x=y=PpSylG
83 1 2 3 4 5 6 7 8 9 10 sylow3lem2 φH=N
84 83 fveq2d φH=N
85 82 84 oveq12d φKxy|xyPpSylGgXg˙x=yH=PpSylGN
86 49 50 85 3eqtr3rd φPpSylGN=X/G~QGNN
87 22 31 43 44 86 mulcan2ad φPpSylG=X/G~QGN