Metamath Proof Explorer


Theorem tanord

Description: The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanord Aπ2π2Bπ2π2A<BtanA<tanB

Proof

Step Hyp Ref Expression
1 tru
2 fveq2 x=ytanx=tany
3 fveq2 x=Atanx=tanA
4 fveq2 x=Btanx=tanB
5 ioossre π2π2
6 elioore xπ2π2x
7 6 recnd xπ2π2x
8 6 rered xπ2π2x=x
9 id xπ2π2xπ2π2
10 8 9 eqeltrd xπ2π2xπ2π2
11 cosne0 xxπ2π2cosx0
12 7 10 11 syl2anc xπ2π2cosx0
13 6 12 retancld xπ2π2tanx
14 13 adantl xπ2π2tanx
15 6 3ad2ant1 xπ2π2yπ2π2x<yx
16 15 adantr xπ2π2yπ2π2x<yx<0x
17 16 recnd xπ2π2yπ2π2x<yx<0x
18 17 negnegd xπ2π2yπ2π2x<yx<0x=x
19 18 fveq2d xπ2π2yπ2π2x<yx<0tanx=tanx
20 17 negcld xπ2π2yπ2π2x<yx<0x
21 cosneg xcosx=cosx
22 17 21 syl xπ2π2yπ2π2x<yx<0cosx=cosx
23 simpl1 xπ2π2yπ2π2x<yx<0xπ2π2
24 23 12 syl xπ2π2yπ2π2x<yx<0cosx0
25 22 24 eqnetrd xπ2π2yπ2π2x<yx<0cosx0
26 tanneg xcosx0tanx=tanx
27 20 25 26 syl2anc xπ2π2yπ2π2x<yx<0tanx=tanx
28 19 27 eqtr3d xπ2π2yπ2π2x<yx<0tanx=tanx
29 15 adantr xπ2π2yπ2π2x<yx<00<yx
30 29 renegcld xπ2π2yπ2π2x<yx<00<yx
31 25 adantrr xπ2π2yπ2π2x<yx<00<ycosx0
32 30 31 retancld xπ2π2yπ2π2x<yx<00<ytanx
33 32 renegcld xπ2π2yπ2π2x<yx<00<ytanx
34 0red xπ2π2yπ2π2x<yx<00<y0
35 simp2 xπ2π2yπ2π2x<yyπ2π2
36 5 35 sselid xπ2π2yπ2π2x<yy
37 36 adantr xπ2π2yπ2π2x<yx<00<yy
38 simpl2 xπ2π2yπ2π2x<yx<00<yyπ2π2
39 elioore yπ2π2y
40 39 recnd yπ2π2y
41 39 rered yπ2π2y=y
42 id yπ2π2yπ2π2
43 41 42 eqeltrd yπ2π2yπ2π2
44 cosne0 yyπ2π2cosy0
45 40 43 44 syl2anc yπ2π2cosy0
46 38 45 syl xπ2π2yπ2π2x<yx<00<ycosy0
47 37 46 retancld xπ2π2yπ2π2x<yx<00<ytany
48 simprl xπ2π2yπ2π2x<yx<00<yx<0
49 29 lt0neg1d xπ2π2yπ2π2x<yx<00<yx<00<x
50 48 49 mpbid xπ2π2yπ2π2x<yx<00<y0<x
51 simpl1 xπ2π2yπ2π2x<yx<00<yxπ2π2
52 eliooord xπ2π2π2<xx<π2
53 51 52 syl xπ2π2yπ2π2x<yx<00<yπ2<xx<π2
54 53 simpld xπ2π2yπ2π2x<yx<00<yπ2<x
55 halfpire π2
56 ltnegcon1 π2xπ2<xx<π2
57 55 29 56 sylancr xπ2π2yπ2π2x<yx<00<yπ2<xx<π2
58 54 57 mpbid xπ2π2yπ2π2x<yx<00<yx<π2
59 0xr 0*
60 55 rexri π2*
61 elioo2 0*π2*x0π2x0<xx<π2
62 59 60 61 mp2an x0π2x0<xx<π2
63 30 50 58 62 syl3anbrc xπ2π2yπ2π2x<yx<00<yx0π2
64 tanrpcl x0π2tanx+
65 63 64 syl xπ2π2yπ2π2x<yx<00<ytanx+
66 65 rpgt0d xπ2π2yπ2π2x<yx<00<y0<tanx
67 32 lt0neg2d xπ2π2yπ2π2x<yx<00<y0<tanxtanx<0
68 66 67 mpbid xπ2π2yπ2π2x<yx<00<ytanx<0
69 simprr xπ2π2yπ2π2x<yx<00<y0<y
70 eliooord yπ2π2π2<yy<π2
71 38 70 syl xπ2π2yπ2π2x<yx<00<yπ2<yy<π2
72 71 simprd xπ2π2yπ2π2x<yx<00<yy<π2
73 elioo2 0*π2*y0π2y0<yy<π2
74 59 60 73 mp2an y0π2y0<yy<π2
75 37 69 72 74 syl3anbrc xπ2π2yπ2π2x<yx<00<yy0π2
76 tanrpcl y0π2tany+
77 75 76 syl xπ2π2yπ2π2x<yx<00<ytany+
78 77 rpgt0d xπ2π2yπ2π2x<yx<00<y0<tany
79 33 34 47 68 78 lttrd xπ2π2yπ2π2x<yx<00<ytanx<tany
80 79 anassrs xπ2π2yπ2π2x<yx<00<ytanx<tany
81 simpl3 xπ2π2yπ2π2x<yy0x<y
82 15 adantr xπ2π2yπ2π2x<yy0x
83 36 adantr xπ2π2yπ2π2x<yy0y
84 82 83 ltnegd xπ2π2yπ2π2x<yy0x<yy<x
85 81 84 mpbid xπ2π2yπ2π2x<yy0y<x
86 83 renegcld xπ2π2yπ2π2x<yy0y
87 simpr xπ2π2yπ2π2x<yy0y0
88 83 le0neg1d xπ2π2yπ2π2x<yy0y00y
89 87 88 mpbid xπ2π2yπ2π2x<yy00y
90 simpl2 xπ2π2yπ2π2x<yy0yπ2π2
91 90 70 syl xπ2π2yπ2π2x<yy0π2<yy<π2
92 91 simpld xπ2π2yπ2π2x<yy0π2<y
93 ltnegcon1 π2yπ2<yy<π2
94 55 83 93 sylancr xπ2π2yπ2π2x<yy0π2<yy<π2
95 92 94 mpbid xπ2π2yπ2π2x<yy0y<π2
96 0re 0
97 elico2 0π2*y0π2y0yy<π2
98 96 60 97 mp2an y0π2y0yy<π2
99 86 89 95 98 syl3anbrc xπ2π2yπ2π2x<yy0y0π2
100 82 renegcld xπ2π2yπ2π2x<yy0x
101 simp3 xπ2π2yπ2π2x<yx<y
102 0red xπ2π2yπ2π2x<y0
103 ltletr xy0x<yy0x<0
104 15 36 102 103 syl3anc xπ2π2yπ2π2x<yx<yy0x<0
105 101 104 mpand xπ2π2yπ2π2x<yy0x<0
106 105 imp xπ2π2yπ2π2x<yy0x<0
107 ltle x0x<0x0
108 82 96 107 sylancl xπ2π2yπ2π2x<yy0x<0x0
109 106 108 mpd xπ2π2yπ2π2x<yy0x0
110 82 le0neg1d xπ2π2yπ2π2x<yy0x00x
111 109 110 mpbid xπ2π2yπ2π2x<yy00x
112 simpl1 xπ2π2yπ2π2x<yy0xπ2π2
113 112 52 syl xπ2π2yπ2π2x<yy0π2<xx<π2
114 113 simpld xπ2π2yπ2π2x<yy0π2<x
115 55 82 56 sylancr xπ2π2yπ2π2x<yy0π2<xx<π2
116 114 115 mpbid xπ2π2yπ2π2x<yy0x<π2
117 elico2 0π2*x0π2x0xx<π2
118 96 60 117 mp2an x0π2x0xx<π2
119 100 111 116 118 syl3anbrc xπ2π2yπ2π2x<yy0x0π2
120 tanord1 y0π2x0π2y<xtany<tanx
121 99 119 120 syl2anc xπ2π2yπ2π2x<yy0y<xtany<tanx
122 85 121 mpbid xπ2π2yπ2π2x<yy0tany<tanx
123 83 recnd xπ2π2yπ2π2x<yy0y
124 cosneg ycosy=cosy
125 123 124 syl xπ2π2yπ2π2x<yy0cosy=cosy
126 90 45 syl xπ2π2yπ2π2x<yy0cosy0
127 125 126 eqnetrd xπ2π2yπ2π2x<yy0cosy0
128 86 127 retancld xπ2π2yπ2π2x<yy0tany
129 106 25 syldan xπ2π2yπ2π2x<yy0cosx0
130 100 129 retancld xπ2π2yπ2π2x<yy0tanx
131 128 130 ltnegd xπ2π2yπ2π2x<yy0tany<tanxtanx<tany
132 122 131 mpbid xπ2π2yπ2π2x<yy0tanx<tany
133 123 negnegd xπ2π2yπ2π2x<yy0y=y
134 133 fveq2d xπ2π2yπ2π2x<yy0tany=tany
135 123 negcld xπ2π2yπ2π2x<yy0y
136 tanneg ycosy0tany=tany
137 135 127 136 syl2anc xπ2π2yπ2π2x<yy0tany=tany
138 134 137 eqtr3d xπ2π2yπ2π2x<yy0tany=tany
139 132 138 breqtrrd xπ2π2yπ2π2x<yy0tanx<tany
140 139 adantlr xπ2π2yπ2π2x<yx<0y0tanx<tany
141 0red xπ2π2yπ2π2x<yx<00
142 simpl2 xπ2π2yπ2π2x<yx<0yπ2π2
143 5 142 sselid xπ2π2yπ2π2x<yx<0y
144 80 140 141 143 ltlecasei xπ2π2yπ2π2x<yx<0tanx<tany
145 28 144 eqbrtrd xπ2π2yπ2π2x<yx<0tanx<tany
146 simpl3 xπ2π2yπ2π2x<y0xx<y
147 15 adantr xπ2π2yπ2π2x<y0xx
148 simpr xπ2π2yπ2π2x<y0x0x
149 simpl1 xπ2π2yπ2π2x<y0xxπ2π2
150 149 52 syl xπ2π2yπ2π2x<y0xπ2<xx<π2
151 150 simprd xπ2π2yπ2π2x<y0xx<π2
152 elico2 0π2*x0π2x0xx<π2
153 96 60 152 mp2an x0π2x0xx<π2
154 147 148 151 153 syl3anbrc xπ2π2yπ2π2x<y0xx0π2
155 simpl2 xπ2π2yπ2π2x<y0xyπ2π2
156 5 155 sselid xπ2π2yπ2π2x<y0xy
157 0red xπ2π2yπ2π2x<y0x0
158 147 156 146 ltled xπ2π2yπ2π2x<y0xxy
159 157 147 156 148 158 letrd xπ2π2yπ2π2x<y0x0y
160 155 70 syl xπ2π2yπ2π2x<y0xπ2<yy<π2
161 160 simprd xπ2π2yπ2π2x<y0xy<π2
162 elico2 0π2*y0π2y0yy<π2
163 96 60 162 mp2an y0π2y0yy<π2
164 156 159 161 163 syl3anbrc xπ2π2yπ2π2x<y0xy0π2
165 tanord1 x0π2y0π2x<ytanx<tany
166 154 164 165 syl2anc xπ2π2yπ2π2x<y0xx<ytanx<tany
167 146 166 mpbid xπ2π2yπ2π2x<y0xtanx<tany
168 145 167 15 102 ltlecasei xπ2π2yπ2π2x<ytanx<tany
169 168 3expia xπ2π2yπ2π2x<ytanx<tany
170 169 adantl xπ2π2yπ2π2x<ytanx<tany
171 2 3 4 5 14 170 ltord1 Aπ2π2Bπ2π2A<BtanA<tanB
172 1 171 mpan Aπ2π2Bπ2π2A<BtanA<tanB