Metamath Proof Explorer


Theorem tngngp2

Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngngp2.t T=GtoNrmGrpN
tngngp2.x X=BaseG
tngngp2.d D=distT
Assertion tngngp2 N:XTNrmGrpGGrpDMetX

Proof

Step Hyp Ref Expression
1 tngngp2.t T=GtoNrmGrpN
2 tngngp2.x X=BaseG
3 tngngp2.d D=distT
4 ngpgrp TNrmGrpTGrp
5 2 fvexi XV
6 reex V
7 fex2 N:XXVVNV
8 5 6 7 mp3an23 N:XNV
9 2 a1i NVX=BaseG
10 1 2 tngbas NVX=BaseT
11 eqid +G=+G
12 1 11 tngplusg NV+G=+T
13 12 oveqdr NVxXyXx+Gy=x+Ty
14 9 10 13 grppropd NVGGrpTGrp
15 8 14 syl N:XGGrpTGrp
16 4 15 imbitrrid N:XTNrmGrpGGrp
17 16 imp N:XTNrmGrpGGrp
18 ngpms TNrmGrpTMetSp
19 18 adantl N:XTNrmGrpTMetSp
20 eqid BaseT=BaseT
21 20 3 msmet2 TMetSpDBaseT×BaseTMetBaseT
22 19 21 syl N:XTNrmGrpDBaseT×BaseTMetBaseT
23 eqid -G=-G
24 2 23 grpsubf GGrp-G:X×XX
25 17 24 syl N:XTNrmGrp-G:X×XX
26 fco N:X-G:X×XXN-G:X×X
27 25 26 syldan N:XTNrmGrpN-G:X×X
28 8 adantr N:XTNrmGrpNV
29 1 23 tngds NVN-G=distT
30 28 29 syl N:XTNrmGrpN-G=distT
31 3 30 eqtr4id N:XTNrmGrpD=N-G
32 31 feq1d N:XTNrmGrpD:X×XN-G:X×X
33 27 32 mpbird N:XTNrmGrpD:X×X
34 ffn D:X×XDFnX×X
35 fnresdm DFnX×XDX×X=D
36 33 34 35 3syl N:XTNrmGrpDX×X=D
37 28 10 syl N:XTNrmGrpX=BaseT
38 37 sqxpeqd N:XTNrmGrpX×X=BaseT×BaseT
39 38 reseq2d N:XTNrmGrpDX×X=DBaseT×BaseT
40 36 39 eqtr3d N:XTNrmGrpD=DBaseT×BaseT
41 37 fveq2d N:XTNrmGrpMetX=MetBaseT
42 22 40 41 3eltr4d N:XTNrmGrpDMetX
43 17 42 jca N:XTNrmGrpGGrpDMetX
44 15 biimpa N:XGGrpTGrp
45 44 adantrr N:XGGrpDMetXTGrp
46 simprr N:XGGrpDMetXDMetX
47 8 adantr N:XGGrpDMetXNV
48 47 10 syl N:XGGrpDMetXX=BaseT
49 48 fveq2d N:XGGrpDMetXMetX=MetBaseT
50 46 49 eleqtrd N:XGGrpDMetXDMetBaseT
51 metf DMetBaseTD:BaseT×BaseT
52 50 51 syl N:XGGrpDMetXD:BaseT×BaseT
53 ffn D:BaseT×BaseTDFnBaseT×BaseT
54 fnresdm DFnBaseT×BaseTDBaseT×BaseT=D
55 52 53 54 3syl N:XGGrpDMetXDBaseT×BaseT=D
56 55 50 eqeltrd N:XGGrpDMetXDBaseT×BaseTMetBaseT
57 55 fveq2d N:XGGrpDMetXMetOpenDBaseT×BaseT=MetOpenD
58 simprl N:XGGrpDMetXGGrp
59 eqid MetOpenD=MetOpenD
60 1 3 59 tngtopn GGrpNVMetOpenD=TopOpenT
61 58 47 60 syl2anc N:XGGrpDMetXMetOpenD=TopOpenT
62 57 61 eqtr2d N:XGGrpDMetXTopOpenT=MetOpenDBaseT×BaseT
63 eqid TopOpenT=TopOpenT
64 3 reseq1i DBaseT×BaseT=distTBaseT×BaseT
65 63 20 64 isms2 TMetSpDBaseT×BaseTMetBaseTTopOpenT=MetOpenDBaseT×BaseT
66 56 62 65 sylanbrc N:XGGrpDMetXTMetSp
67 simpl N:XGGrpDMetXN:X
68 1 2 6 tngnm GGrpN:XN=normT
69 58 67 68 syl2anc N:XGGrpDMetXN=normT
70 9 10 eqtr3d NVBaseG=BaseT
71 70 12 grpsubpropd NV-G=-T
72 47 71 syl N:XGGrpDMetX-G=-T
73 69 72 coeq12d N:XGGrpDMetXN-G=normT-T
74 47 29 syl N:XGGrpDMetXN-G=distT
75 73 74 eqtr3d N:XGGrpDMetXnormT-T=distT
76 eqimss normT-T=distTnormT-TdistT
77 75 76 syl N:XGGrpDMetXnormT-TdistT
78 eqid normT=normT
79 eqid -T=-T
80 eqid distT=distT
81 78 79 80 isngp TNrmGrpTGrpTMetSpnormT-TdistT
82 45 66 77 81 syl3anbrc N:XGGrpDMetXTNrmGrp
83 43 82 impbida N:XTNrmGrpGGrpDMetX